[1]

Wolpaw J.R., Birbaumer N., McFarland D.J., Pfurtscheller G., Vaughan T.M., Brain computer interfaces for communication and control, Clin Neurophysiol, 2002, 113, 767–791. CrossrefGoogle Scholar

[2]

Sanei D., Chambers J., EEG Signal Processing. John Wiley & Sons., 2008. Google Scholar

[3]

Sabeti M., Boostani R., Katebi S., Price G., Selection of relevant features for EEG signal classification of schizophrenic patients, Biomedical Signal Processing and Control, 2007, 2(2).122-134. CrossrefWeb of ScienceGoogle Scholar

[4]

Rodríguez-Bermúdez G., García-Laencina P., Analysis of eeg signals using nonlinear dynamics and chaos: A review, Applied Mathematics & Information Sciences, 2015. Google Scholar

[5]

Tomasevic N., Neskovic A., Neskovic N., Neural network-based approach to EEG signal simulation, International Journal of Neural Systems, 2012, 22 (3), 1–16. Web of ScienceGoogle Scholar

[6]

Tong S., Thankor N. V., Quantitative EEG Analysis Methods and Clinical Applications, Artech House. Google Scholar

[7]

Pfurtscheller G., Brunner C., Schlögl A., da Silva FL. Mu rhythm (de)synchronization and EEG single-trial classification of different motor imagery tasks, NeuroImage, 2006, 31(1), 153-159. CrossrefGoogle Scholar

[8]

Bashashati A., Fatourechi M., Ward R.K., Birch G.E., A survey of signal processing algorithms in brain-computer interfaces based on electrical brain signals, Journal of Neural Engineering, 2007, 4(2), 32-57. CrossrefWeb of ScienceGoogle Scholar

[9]

Lotte F., Congedo M., Lécuyer A., Lamarche F., Arnaldi B., A review of classification algorithms for EEG-based brain-computer interfaces, Journal of neural engineering, 2007, 4(2), 1-13. CrossrefWeb of ScienceGoogle Scholar

[10]

Nicolas-Alonso L., Gomez-Gil J., Brain computer interfaces, a review, Sensors, 2012, 1211–1279. Web of ScienceGoogle Scholar

[11]

Garca-Laencina P. J., Rodriguez-Bermudez G., Roca-Dorda J., Exploring dimensionality reduction of EEG features in motor imagery task classication, Expert Systems with Applications, 2014, 23 (04), 5285-5295. Google Scholar

[12]

Álvarez-Arenas A., Belmonte-Beitia J., Calvo G.F., Nonlinear waves in a simple model of high-grade glioma, Applied Mathematics and Nonlinear Sciences, 2016, 1 (2), 405-422. CrossrefGoogle Scholar

[13]

Pérez-García V.M., Fitzpatrick S., Pérez-Romasanta L.A., Pesic M., Schucht P., Arana E., Sánchez-Gómez P., Applied mathematics and nonlinear sciences in the war on cancer, Applied Mathematics and Nonlinear Sciences, 2016, 1 (2), 423-436. CrossrefGoogle Scholar

[14]

Taplan M. Fundamentals of EEG measurement. Measurement Science Review, 2002, 2, 1-11. Google Scholar

[15]

Nijboer F., Furdea A., Gunst I., Mellinger J., McFarland D.J., Birbaumer N., K¨ubler A., An auditory brain–computer interface (BCI), Journal of Neuroscience Methods, 2008, 167, 43-50. Web of ScienceCrossrefGoogle Scholar

[16]

Ahn M., Chan Jun S., Performance variation in motor imagery brain–computer interface: A brief review, Journal of Neuroscience Methods, 2015, 243, 103-110.Web of ScienceCrossrefGoogle Scholar

[17]

Vukelić M., Gharabaghi A., Oscillatory entrainment of the motor cortical network during motor imagery is modulated by the feedback modality, NeuroImage, 2015, 111, 1-11. Web of ScienceCrossrefGoogle Scholar

[18]

Guger C., Edlinger G., Harkam W., Niedermayer I., Pfurtscheller G.A., How Many People are Able to Operate an EEG-Based Brain-Computer Interface (BCI)?, IEEE Trasanctions on neural systems and rehabilitation engineering, 2003, 11(2), 145-147. CrossrefGoogle Scholar

[19]

Stam C., Nonlinear dynamical analysis of EEG and MEG: Review of an emerging field, Clinical Neurophysiology, 2005, 116, 2266-2301. CrossrefGoogle Scholar

[20]

Liu J., Zhang C., Zheng C., EEG-based estimation of mental fatigue by using KPCA-HMM and complexity parameters, Biomedical Signal Processing and Control, 2010, 5, 124-130.Web of ScienceCrossrefGoogle Scholar

[21]

Bajaj V., Pachori R., Classification of human emotions based on multiwavelet transform of EEG signals, 2013 AASRI Conference on Intelligent Systems and Control, Elsevier, Vancouver, 2013. Google Scholar

[22]

Krusienski D. J., Sellers E. W., Cabestaing F., Bayoudh S., McFarland D. J., Vaughan T. M., and Wolpaw J. R., A comparison of classification techniques for the P300 speller, J. Neural Eng, 2006, 3(4), 299–305. CrossrefGoogle Scholar

[23]

Pao Y.-H., Park G.-H., Sobajic D. J., Learning and generalization characteristics of the random vector functional-link net Neurocomputing, Elsevier, 1994, 6, 163-180. Google Scholar

[24]

Igelnik B., Pao Y.-H., Stochastic choice of basis functions in adaptive function approximation and the functional-link net Neural Networks, IEEE Transactions on, 1995, 6, 1320-1329. Google Scholar

[25]

Huang G.-B., Chen L., Convex incremental extreme learning machine, Neurocomputing, 2007, 70 (16), 3056–3062. Web of ScienceCrossrefGoogle Scholar

[26]

Huang G.-B., Wang D. H., Lan Y. Extreme learning machines: a survey, International Journal of Machine Learning and Cybernetics, 2011, 2 (2), 107–122. CrossrefWeb of ScienceGoogle Scholar

[27]

Serre D., Matrices: Theory and Applications, Springer, New York, 2002. Google Scholar

[28]

Huang G., Zhu Q., Siew C., Extreme learning machine: Theory and applications, Neurocomputing, 2006, 70 (1-3), 489–501. CrossrefGoogle Scholar

[29]

Rong H.-J., Ong Y.-S., Tan A.-H., Zhu Z., A fast pruned-extreme learning machine for classification problem, Neurocomputing, 2008, 72 (1-3), 359–366. Web of ScienceCrossrefGoogle Scholar

[30]

Miche Y., Bas P., Jutten C., Simula O., Lendasse A., A methodology for building regression models using extreme learning machine: OP-ELM, In: Proceedings of the European Symposium on Artificial Neural Networks (ESANN), 2008, 247–252.Google Scholar

[31]

Miche Y., Sorjamaa A., Lendasse A., OP-ELM: Theory, experiments and a toolbox, In: Proceedings of the International Conference on Artificial Neural Networks (ICANN), LNCS, 2008, 5163, 145–154.Google Scholar

[32]

Mateo F., Lendasse A., A variable selection approach based on the delta test for extreme learning machine models, In: Proceedings of the European Symposium on Time Series Prediction (ESTP) 2008, 57–66.Google Scholar

[33]

Miche Y., Lendasse A., A faster model selection criterion for OPELM and OP-KNN: Hannan-quinn criterion, In: Proceeding of the European Symposium on Artificial Neural Networks (ESANN), 2009, 177–182.Google Scholar

[34]

Miche Y., Sorjamaa A., Bas P., Simula O., Jutten C., Lendasse A., OP-ELM: Optimally Pruned Extreme Learning Machine, IEEE Transactions on Neural Networks, 2009, 21 (1), 158–162. Web of ScienceGoogle Scholar

[35]

Similä T., Tikka J., Multiresponse sparse regression with application to multidimensional scaling, In: Proceedings of the 15th International Conference on Artificial Neural Networks: Formal Models and Their Applications - ICANN 2005, LNCS, 2005, 3697, 97–102. Google Scholar

[36]

Alpaydin E., Introduction to Machine Learning, MIT Press. Cambridge, MA, USA, 2010. Google Scholar

[37]

Duan L. and Zhong H. and Miao J., Yang Z., Ma W., Zhang X., A voting optimized strategy based on ELM for improving classification of motor imagery BCI data, Cognitive Computation, 2014, 477-483. Web of ScienceGoogle Scholar

[38]

Bamdadian A., Guan C., Ang K.K., Xu J., Improving session-to-session transfer performance of motor imagery-based BCI using adaptive extreme learning machine, Engineering in Medicine and Biology Society (EMBC), 2013 35th Annual International Conference of the IEEE, 2013, 2188-2191.Google Scholar

[39]

Tan P., Tan G.-Z., Cai Z.-X., Sa W.-P., Zou Y.-Q., Using ELM-based weighted probabilistic model in the classification of synchronous EEG BCI, Medical & biological engineering & computing, 2017, 55 (1), 33-43.CrossrefWeb of ScienceGoogle Scholar

[40]

Tan P., Sa W., Yu L., Applying Extreme Learning Machine to classification of EEG BCI, Cyber Technology in Automation, Control, and Intelligent Systems (CYBER), 2016 IEEE International Conference on, 2016, 228-232. Google Scholar

[41]

Kruskal W. H. Historical notes on the wilcoxon unpaired two-sample test, Journal of the American Statistical Association, 1957, 52 (279), 356–360. CrossrefGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.