[1]

Li Y., Chen Y. Q., Podlubny I., Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mitta- Leffler stability, Comput Math Appl, 2009, 24, 1429-1468. Google Scholar

[2]

Chen Y. Q., Ahn H. S., Podlubny I., Robust stability check of fractional order linear time invariant systems with interval uncertainties, Signal Processing, 2006, 86, 2611-2618. Google Scholar

[3]

Lu J.G., Chen Y. Q., Stability and stabilization of fractional-order linear systems with convex polytopic uncertainties, Fract Calc Appl Anal, 2013, 16, 142-157. Google Scholar

[4]

Cao Y. C., Li Y., Ren W.,Chen Y. Q., Distributed coordination of networked fractional-order systems, IEEE T SystMan CY B, 2010, 40, 362-370. CrossrefGoogle Scholar

[5]

Cao Y. C., Ren W., Distributed coordination for fractional-order systems: dynamic interaction and absolute/relative damping, Syst Control Lett, 2010, 43, 233-240. Google Scholar

[6]

Yang H. Y., Guo L., Zhang Y., Yao X., Movement consensus of complex fractional-order multi-agent systems, Acta Automatica Sinica, 2014, 40, 489-496. Google Scholar

[7]

Yang H. Y., Zhu X., Cao K., Distributed coordination of fractional order multi-agent systems with communication delays, Fract Calc Appl Anal, 2014, 17, 23-37; CrossrefWeb of ScienceGoogle Scholar

[8]

Podlubny I., Fractional differential equations. San Diego, CA: Academic Press, 1999 Google Scholar

[9]

Ren W., Cao Y. C., Distributed coordination of multi-agent networks, Springer-Verlag, London, 2011 Google Scholar

[10]

Jadbabaie A., Lin J., Morse A. S., Coordination of groups of mobile autonomous agents using nearest neighbor rules, IEEE T Automat Contr, 2003, 48, 988-1001. CrossrefWeb of ScienceGoogle Scholar

[11]

Olfati-Saber R., Murray R. M., Consensus problems in networks of agents with switching topology and time-delays, IEEE T Automat Contr, 2004, 49, 1520-1533. CrossrefGoogle Scholar

[12]

Ren W., Beard R. W., Atkins E. M., Information consensus in multivehicle cooperative control: Collective group behavior through local interaction, IEEE Contr Syst Mag, 2007, 27, 71-82. CrossrefGoogle Scholar

[13]

Li S., Du H., Lin X., Finite-time consensus algorithm for multi-agent with double-integrator dynamics, Automatica, 2011, 47, 1706-1712.CrossrefWeb of ScienceGoogle Scholar

[14]

Chen F., Chen Z. Q., Xiang L. Y., Liu Z., Yuan Z., Reaching a consensus via pinning control, Automatica, 2009, 45, 1215-1220. CrossrefWeb of ScienceGoogle Scholar

[15]

Yang H. Y., Zhang Z. X., Zhang S. Y., Consensus of Second-Order Multi-Agent Systems with Exogenous Disturbances, Int J Robust Nonlin, 2001, 21, 945-956. Web of ScienceGoogle Scholar

[16]

Lin P., Jia Y. M., Consensus of second-order discrete-time multi-agent systems with nonuniform time-delays and dynamically changing topologies, Automatica, 2009, 45, 2154-2158. CrossrefWeb of ScienceGoogle Scholar

[17]

Yu J., Wang L., Group consensus in multi-agent systems with switching topologies and communication delays, Syst Control Lett, 2010, 59, 340-348.CrossrefWeb of ScienceGoogle Scholar

[18]

Tian Y. P., Liu C. L., Consensus of multi-agent systems with diverse input and communication delays, IEEE T Automat Contr, 2008, 53, 2122-2128. Web of ScienceCrossrefGoogle Scholar

[19]

Yang H. Y., Zhu X. L., Zhang S. Y., Consensus of second-order delayed multi-agent systems with leader-following, Eur J Contr, 2010, 16, 188-199. CrossrefGoogle Scholar

[20]

Ji M., Ferrari-Trecate G., Egerstedt M., Buffa A., Containment control in mobile networks. IEEE T Automat Contr, 2008, 53, 1972-1975. CrossrefWeb of ScienceGoogle Scholar

[21]

Liu H., Xie G., Wang L., Necessary and Sufficient Conditions for Containment Control of Networked Multi-agent Systems, Automatica, 2012, 48, 1415-1422. CrossrefWeb of ScienceGoogle Scholar

[22]

Meng Z., Ren W., You Z., Distributed finite-time attitude containment control for multiple rigid bodies, Automatica, 2010, 46, 2092-2099. CrossrefWeb of ScienceGoogle Scholar

[23]

Cao Y., Stuart D., Ren W., Meng Z., Distributed containment control for multiple autonomous vehicles with double-integrator dynamics: algorithms and experiments IEEE T Contr Syst Technol, 2011, 19, 929-938. Google Scholar

[24]

Liu K., Xie G., Wang L., Containment control for second-order multi-agent systems with time-varying delays, Syst Control Lett, 2014, 67(1), 24-31. Google Scholar

[25]

Zheng Y., Wang L., Containment control of heterogeneous multi-agent systems, Int J Control, 2014, 87(1), 1-8. CrossrefWeb of ScienceGoogle Scholar

[26]

Wang Y., Cheng L., Hou Z., *et al*., Containment control of multi-agent systems in a noisy communication environment, Automatica, 2014, 50, 1922-1928. CrossrefWeb of ScienceGoogle Scholar

[27]

Li W., Xie L., Zhang J., Containment control of leader-following multi-agent systems with Markovian switching network topologies and measurement noises, Automatica, 2015, 51, 263-267. CrossrefWeb of ScienceGoogle Scholar

[28]

Yang H.Y., Han F., Liu F., Liu H, Zhao M., Distributed Coordination of Fractional Dynamical Systems with Exogenous Disturbances, Mathl Probl Eng, 2014, 793903, 1-7. Google Scholar

[29]

Yang H.Y., Guo L., Zhu X., Cao K., Zou H., Consensus of compound-order multi-agent systems with communication delays, Cent. Eur. J. Phys. 2013, 11, 806-812. Web of ScienceGoogle Scholar

[30]

Yang H.Y., Wang F., Han F., Containment control of fractional order multi-agent systems with time delays, IEEE/CAA Journal of Automatica Sinica, (In press), CrossrefGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.