[1]

Rao U.V.R., Savage I.R., Sobel M., Contributions to the theory of rank order statistics: the two-sample censored case, Ann. Math. Stat., 1960, 31, 415. CrossrefGoogle Scholar

[2]

Basu A.P., On a generalized savage statistic with applications to life testing, Ann. Math. Stat., 1968, 39, 1591. CrossrefGoogle Scholar

[3]

Johnson R.A., Mehrotra K.G., Locally most powerful rank tests for the two-sample problem with censored data, Ann. Math. Stat., 1972, 43, 823. CrossrefGoogle Scholar

[4]

Mehrotra K.G., Johnson R.A., Asymptotic sufficiency and asymptotically most powerful tests for the two sample censored situation, Ann. Stat., 1976, 4, 589. CrossrefGoogle Scholar

[5]

Bhattacharyya G.K., Mehrotra K.G., On testing equality of two exponential distributions under combined type-IIcensoring, J. Am. Stat. Assoc., 1981, 76, 886. CrossrefGoogle Scholar

[6]

Mehrotra K.G., Bhattacharyya G.K., Confidence intervals with jointly type-II censored samples from two exponential distributions, J. Am. Stat. Assoc., 1982, 77, 441. CrossrefGoogle Scholar

[7]

Balakrishnan N., Rasouli A., Exact likelihood inference for two exponential populations under joint type-II censoring, Comput. Stat. Data. Anal., 2008, 52, 2725. CrossrefWeb of ScienceGoogle Scholar

[8]

Rasouli A., Balakrishnan N., Exact likelihood inference for two exponential populations under joint progressive type-II censoring, Commun. Stat. Theory. Methods., 2010, 39, 2172. Web of ScienceCrossrefGoogle Scholar

[9]

Ashafaya R., Balakrishnanbc N., Abdel-Atyd Y., Bayesian inference based on a jointly type-II censored sample from two exponential populations, J. Stat. Comp. Simul., 2014, 84, 2427 CrossrefGoogle Scholar

[10]

Kundu D., A new two sample type-II progressive censoring scheme, arXiv:1609.05805v1, stat.ME., 2016,19. Google Scholar

[11]

Ismail A., Abdel-Ghaly A.A., El-Khodary A.H., Optimum constant-stress life test plans for Pareto distribution under type-I censoring, J. Stat. Comp. Simul., 2011, 81, 1835. CrossrefGoogle Scholar

[12]

Nofal Z.M., El Gebaly Y.M., New Characterizations of the Pareto Distribution, P. J. S. O. R., 2017, 13, 63. Google Scholar

[13]

Mdziniso N.C.K., Cooray K., Odd Pareto families of distributions for modeling loss payment data, Scandinavian Actuarial Journal, http://dx.doi.org/10.1080/03461238.2017.1280527, 2017. Web of Science

[14]

Balkema A.A., Haan L., Residual life time at great age, Ann. Probab., 1974, 2, 792. CrossrefGoogle Scholar

[15]

Arnold B.C., Pareto distributions. Fairland, MD, International Cooperative Publishing House,1983. Google Scholar

[16]

Vidondo B., Prairie Y.T., Blanco J.M., Duarte C.M., Some aspects of the analysis of size spectra in aquatic ecology, Limnol Oceanogr, 1997, 42, 184. CrossrefGoogle Scholar

[17]

Childs A., Balakrishnan N., Moshref M., Order statistics from non-identical right truncated Lomax random variables with applications, Statist Papers, 2001, 42, 187. CrossrefGoogle Scholar

[18]

Awadhi S.A., Ghitany M.E., Statistical properties of Poisso–Lomax distribution and its application to repeated accidents data, J. Appl. Statist. Sci., 2001, 10, 365. Google Scholar

[19]

Howlader H.A., Hossain A.M., Bayesian survival estimation of Pareto distribution of the second kind based on failurecensored data. Comput Stat Data, Comput. Stat. Data. Anal., 2002, 38. Google Scholar

[20]

Abd-Elfattah A.M., Alaboud F.M., Alharby A.H., On sample size estimation for Lomax distribution, Aust. J. Basic. Appl. Sci., 2007, 1, 373. Google Scholar

[21]

Hassan A.S., Al-Ghamdi A.S., Optimum step stress accelerated life testing for Lomax distribution, J. Appl. Sci. Res., 2009, 5, 2153. Google Scholar

[22]

Davison A.C., Hinkley D.V., Bootstrap Methods and their Applications, Cambridge University Press, 1997. Google Scholar

[23]

Efron B., Tibshirani R.J., An introduction to the bootstrap, New York Chapman and Hall, 1993. Google Scholar

[24]

Hall P., Theoretical comparison of bootstrap confidence intervals, Annals of Statistics, 1988, 16, 927. CrossrefGoogle Scholar

[25]

Efron B., Censored data and bootstrap, Journal of the American Statistical Association, 1981, 76, 312. CrossrefGoogle Scholar

[26]

Soliman A.A., Abd Ellah A.H., Abou-Elheggag N.A., Abd-Elmougod G.A. , A simulation-based approach to the study of coefficient of variation of Gompertz distribution under progressive first-failure censoring, Indian Journal of Pure and Applied Mathematics, 2011, 42, 335. CrossrefWeb of ScienceGoogle Scholar

[27]

Abd-Elmougod G.A., El-Sayed M.A., Abdel-Rahman E.O., Coefficient of variation of Topp-Leone distribution under adaptive Type-II progressive censoring scheme: Bayesian and non-Bayesian approach, Journal of Computational and Theoretical Nanoscience, 2015, 12, 4028. CrossrefGoogle Scholar

[28]

Metropolis N., Rosenbluth A.W., Rosenbluth M.N., Teller A.H., Teller E., Equations of state calculations by fast computing machines, J. Chem. Phys., 1953, 21, 1087. CrossrefGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.