[1]

Baleanu D., Fractional Calculus Models and Numerical Methods, World Scientific Publisher Company, 2012. Google Scholar

[2]

Monje C.A., Chen Y.Q., Vinagre B.M., Xue D., Feliu V., Fractional-Order Systems and Controls, Series: Advances in Industrial control, Springer 2010. Google Scholar

[3]

Caponetto R., Dongola G., Fortuna L., Petrás I., Fractional Order Systems: Modelling and Control Applications, World Scientific, Singapore, 2010. Google Scholar

[4]

Baleanu D., Diethelm K., Salas E., Trujillo J.J., Fractional Calculus Models and Numerical Methods, Series on Complexity, Nonlinearity and Chaos, World Scientific, 2012. Google Scholar

[5]

Baleanu D., Günvenc Z.B., Tenreiro Machado J.A., (Eds) New Trends in Nanotechnology and Fractional Calculus Applications, Springer 2010. Google Scholar

[6]

Oldham K.B., Spanier J., The fractional calculus, Academic Press, New York, 1974. Google Scholar

[7]

Miller K.S., Ross B., An introduction to the fractional calculus and fractional differential equations, John Wiley, NY, 1993. Google Scholar

[8]

Samko S.G., Kilbas A.A., Marichev O. I., Fractional Integrals and Derivatives: Theory and Applications, New York: Gordon and Breach, 1993. Google Scholar

[9]

Podlubny I., Fractional differential equations, Academic Press, New York, 1999. Google Scholar

[10]

Golmankhaneh Alireza K., Lambert L., Investigations in Dynamics: with Focus on Fractional Dynamics, Academic Publishing, 2012. Google Scholar

[11]

Uchaikin V., Fractional Derivatives for Physicists and Engineers, Springer 2013. Google Scholar

[12]

Capelas de Oliveira E., Tenreiro Machado J. A., A review of definitions for fractional derivatives and integral, Mathematical Problems in Engineering, 2014 Article ID:238459. Google Scholar

[13]

Abel, N.H. Résolution d’un probléme de mécanique. Oeuvres Complétes (tomo premier, pp. 27-30). Gróndah: Chirstiana (1839a). Google Scholar

[14]

Caputo M., Mainardi F., A new dissipation model based on memory mechanism, Pure Appl. Geophys. 1971, 91, 134-147. CrossrefGoogle Scholar

[15]

Wyss W., Fractional diffusion equation, J. Math. Phys., 1986, 27, 2782-2785. CrossrefGoogle Scholar

[16]

Westerlund S., Capacitor theory, IEEE Transactions on Dielectrics and Electrical Insulation, 1994, 1(5), 826-839. CrossrefGoogle Scholar

[17]

Hermann R., Fractional calculus, New Jersey: World Scientific, 2011. Google Scholar

[18]

Metzler R., Klafter J., The random walk’s guide to anomalous diffusion a fractional dynamics approach, Phys. Reports, 2000, 339, 1-77. CrossrefGoogle Scholar

[19]

Schiessel H., Metzler R., Blumen A., Nonnenmacher F., Generalized viscoelastic models: their fractional equations with solutions, J. Phys. A: Math. Gen. 1995, 28, 6567-6584. CrossrefGoogle Scholar

[20]

Muller S., Kastner M., Brummund J., Ulbricht V., A nonlinear fractional viscoelastic material model polymers, Computational Materials Science, 2011, 50, 2938-2949. CrossrefGoogle Scholar

[21]

Colombaro I., Giusti A., Mainardi F., A class of linear viscoelastic models based on Bessel functions, Mecanica, 2017, 52, 825-832. CrossrefGoogle Scholar

[22]

Giusti A., Mainardi F., A dynamic viscoelastic analogy for fluid-filled elastic tubes, Mecanica 2016, 51, 2321-2330. CrossrefGoogle Scholar

[23]

Meral F.C., Roytson T.J., Magin R., Fractional calculus in viscoelasticity: An experimental study, Commun. Nonlinear Sci. Numer. Simulat. 2010, 15, 939-945. CrossrefGoogle Scholar

[24]

Giusti A., Colombaro I., Prabhakar-like fractional viscoelasticity, arXiv:1705.09246v2, 2017, math-ph. Google Scholar

[25]

Scher H., Montroll E.W., Anomalous transit-time dispersion in amorphous solids, Phys. Rev. B. 1975, 12, 2455-2477. CrossrefGoogle Scholar

[26]

Garrappa R., Mainardi F., Maione G., Models of dielectric relaxation based on completely monotone functions, Frac. Calc. and Appl. Analysis, 2016, 19, 1105-1160. Google Scholar

[27]

Garrappa R., Maione G., Fractional Prabhakar derivative and applicatios in anomalous dielectrics: a numerical approach, Theory and Applications of Non-Integer Order System. Ed. Babiar, A., Czornik, A., Klamka, J., Niezabitowski, M., Springer, pp. 429-439, 2017. Google Scholar

[28]

Garrappa R., Grunwald-Letnikov operators for fractional relaxation in Havriliak-Negami models, Commun. Nonlinear Sci. Numer. Simulat. 2016, 38, 178-191. CrossrefGoogle Scholar

[29]

Mainardi F., Garrappa R., On complete monotonicity of the Prabhakar function and non-Debye relaxation in dielectrics, Journal of Computational Physics, 2015, 293, 70-80. CrossrefGoogle Scholar

[30]

Engheta N., On fractional calculus and fractional multipoles in electromagnetism, IEEE Trans. Antennas Propagat. 1996, 44, 554-566. CrossrefGoogle Scholar

[31]

Hussain A., Ishfaq S., Naqvi Q.A., Fractional curl operator and fractional waveguides, Progress in Electromagnetic Research, PIER. 2006, 63, 319-335. CrossrefGoogle Scholar

[32]

Hussain A., Faryad M., Naqvi Q.A., Fractional curl operator and fractional Chiro-waveguide, Journ. of Electromagnetic Waves and Application 2007, 21(8), 119-1129. Google Scholar

[33]

Faryad M., Naqvi Q.A., Fractional rectangular waveguide, Progress in Electromagnetic Research, PIER, 2007, 75, 383-396 CrossrefGoogle Scholar

[34]

Tarasov V.E., Fractional equations of curie-von Schweidler and Gauss laws, J. Phys. Condens. Matter 2008, 20, 145-212. Google Scholar

[35]

Tarasov V.E., Universal electromagnetic waves in dielectric, J. Phys. Condens. Matter, 2008, 20, 175-223. Google Scholar

[36]

Rosales J.J., Gómez J.F., Guía M., Tkach V.I., Fractional electromagnetic waves, LFNM, International Conference on Laser and Fiber-Optical Networks Modelling. 2011, 4-8 Sept. Kharkov, Ucraine. Google Scholar

[37]

Caputo M., Fabrizio M., A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 2015, 1, 73-85. Google Scholar

[38]

Losada J., Nieto J.J., Properties of a new fractional derivative without singular kernel, Progr. Fract. Differ. Appl. 2015, 1, 87-92. Google Scholar

[39]

Atangana A., Badr Saad T. Alkahtani, Analysis of the Keller-Segel model with a fractional derivative without singular kernel, Entropy, 2015, 17, 4439-4453, . CrossrefGoogle Scholar

[40]

Gómez-Aguilar J.F., Córdova-Fraga T., Escalante-Martínez J.E., Calderón-Ramón C., Escobar-Jiménez R.F., Electrical circuits described by a fractional derivative with a regular kernel, Rev. Mex. Fís. 2016, 62, 144-154. Google Scholar

[41]

Gómez-Aguilar J.F., Escobar-Jiménez R.F., Lopez-Lopez M.G., Alvarado-Martínez V.M., Cordova-Fraga T., Electromagnetic waves in conducting media described by a fractional derivative with non-singular kernel, Journal of Electromagnetic Waves and Applications, 2016, 30, 1493-1503. CrossrefGoogle Scholar

[42]

Singh J., Kumar D., Al Qurashi M., Baleanu D., Analysis of a new fractional model for damped Berger’s equation, Open Phys. 2017, 15, 35-41. CrossrefGoogle Scholar

[43]

HonGuan Sun, Xiaoxiao Hao, Yong Zhang, Baleanu D., Relaxation and diffusion models with non-singular kernels, Physica 2017, A468, 590-596. Google Scholar

[44]

Gao F., Yang X.J., Fractional Maxwell fluid with fractional derivative without singular kernel, Thermal Science, 2016 20(3), S871-S877. CrossrefGoogle Scholar

[45]

Atangana A., Baleanu D., New fractional derivatives with non-local and non-singular kernel, theory and application to heat transfer model, Thermal Science, 2016, 20(2), 763-769. CrossrefGoogle Scholar

[46]

Atangana A., Koca I., Chaos in a simple nonlinear system with Atangana-Baleanu derivatives with fractional order, Chaos Solitons and Fractals, 2016, 89, 447-454. CrossrefGoogle Scholar

[47]

Gómez-Aguilar J.F., Morales-Delgado V.F., Taneco-Hernández M.A., Baleanu D., Escobar-Jiménez R.F., Al Qurashi M.M., Analytical solutions of the electrical RLC circuit via Liouville-Caputo operators with local and non-local kernels, Entropy, 2016,18, 402. CrossrefGoogle Scholar

[48]

Saad B., Alkahtani T., Chua’s cicuit model with Atangana-Baleanu derivative with fractional order, Chaos, Solitons and Fractals 2016, 89, 547-551. CrossrefGoogle Scholar

[49]

Larisse B., Cloot H.J.J.A., Schoombie S.W., Slabbert J.P., A proposed fractional-order Gompertz model and its application to tumour growth data, Mathematical Medicine and Biology, 2015, 32, 187-207. CrossrefGoogle Scholar

[50]

Ertik, H., Calik, A.E., Sirin, H., Sen, M., Öder, B., Investigation of electrical RC circuit within the framework of fractional calculus, Rev. Mex. Fís. 2015, 61, 58-63. Google Scholar

[51]

Escalante-Martínez J.E., Gómez-Aguilar J.F., Calderón-Ramón C., Morales-Mendoza L.J., Cruz-Orduña I., Laguna-Camacho J.R., Experimental evaluation of viscous damping coefficient in the fractional underdamped oscillator, Advances in Mechanical Engineering 2016, 8(4), 1-12. Google Scholar

[52]

Guía M., Rosales J.J., Martínez L., Álvarez J.A., Fractional Drude model of electrons in a metal, Rev. Mex. Fís. 2016, 62, 155-159. Google Scholar

[53]

Drude P., Zur elektronentheorie der metalle, Ann. der Physik, 1900, 306(3), 466-613. Google Scholar

[54]

Drude P., Zur elektronentheorie der metalle; II. Teil. galvanomagnetische und thermomagnetische effecte, Ann. der Physik, 1900, 308(11), 369-402. CrossrefGoogle Scholar

[55]

Dressel M., Grüner G., Electrodynamics of solids: optical properties of electrons in matter, Cambridge University Press, 2002. Google Scholar

[56]

Banchuin R., Novel expressions for time domain response of fractance devices, Cogent Engineering, 2017, 4. 1320823. Google Scholar

[57]

Dressel M., Scheffler M., Verifying the Drude response, Ann. Phys. 2006, 15, 535-544. CrossrefGoogle Scholar

[58]

Mainardi F., On some properties of the Mittag-Leffler function *E*_{α}(−*t*^{α}), completely monotone for *t* > 0, with 0 < *α* < 1, Discrete and Continuos Dynamical systems, Series B, 2014, 19, 2267-2278. CrossrefGoogle Scholar

[59]

Alzoubi F.Y., Alqadi M.K., Al-Khateeb H.M., Saadeh S.M., Ayoub N.Y., Solution of a fractional undamped forced oscillator, Jordan Journal of Physics, 2012, 5, 129-134. Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.