[1]

Yusufoğlu E., Bekir A., The tanh and the sine-cosine methods for exact solutions of the MBBM and the Vakhnenko equations, Chaos Soliton and Fractals, 2008, 38, 1126-1133. CrossrefGoogle Scholar

[2]

Filiz A., Ekici M., Sönmezoğlu A., F-Expansion Method and New Exact Solutions of the Schrödinger-KdV Equation, Scientific World Journal, 2014, . CrossrefGoogle Scholar

[3]

Liu S., Fua Z., Liu S., Zhao Q., Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations, Phys. Lett. A, 2001, 289, 69-74. CrossrefGoogle Scholar

[4]

Bekir A., Guner O., Ayhan B., Çevikel A.C., Exact Solutions for Fractional Differential-Difference Equations by (*G*′/*G*)-Expansion Method with Modified Riemann-Liouville Derivative, Adv. Appl. Math. Mech.,2016, 8, 293-305. Web of ScienceCrossrefGoogle Scholar

[5]

Çenesiz Y., Baleanu D., Kurt A., Tasbozan O., New exact solutions of Burgers’ type equations with conformable derivative., Waves in Random and Complex Media, 2017, 27(1), 103-116. CrossrefWeb of ScienceGoogle Scholar

[6]

Zhang G., Li Z., Duan Y., Exact solitary wave solutions of nonlinear wave equations, Science In China (Series A), 2001, 44, 396-401. CrossrefGoogle Scholar

[7]

Zayed E.M.E., Shorog A.J., Applications of an Extended (*G*′*G*)-Expansion Method to Find Exact Solutions of Nonlinear PDEs in Mathematical Physics, Mathematical Problems in Engineering, 2010, 2010. Web of ScienceGoogle Scholar

[8]

Hosseini K., Ansari R., New exact solutions of nonlinear conformable time-fractional Boussinesq equations using the modified Kudryashov method, Waves in Random and Complex Media, 2017, 27(4), 628-636. Web of ScienceCrossrefGoogle Scholar

[9]

Drazin P.G., Johnson R.S., Solitons, An Introduction Cambridge University Press, Cambridge (1983). Google Scholar

[10]

Golmankhaneh A.K., Golmankhaneh A.K., Baleanu D., On nonlinear fractional Klein–Gordon equation, Signal Processing, 2011, 91(3), 446-451. CrossrefWeb of ScienceGoogle Scholar

[11]

Wang D., Zhang H.Q., Auto-Bäcklund transformation and new exact solutions of (2+1)- dimensional Nizhnik-Novikov-Veselov equation, Int. J. Mod. Phys. C, 2005, 16, 393-412. CrossrefGoogle Scholar

[12]

Lou S.Y., On the coherent structures of the Nizhnik-Novikov-Veselov equation. Phys. Lett. A, 2000, 277, 94-100. CrossrefGoogle Scholar

[13]

Ren Y.J., Zhang H.Q., A generalized F-expansion method to find abundant families of Jacobi Elliptic Function solutions of the (2 + 1)-dimensional Nizhnik-Novikov-Veselov equation, Chaos Solitons and Fractals, 2006, 27, 959-979. CrossrefGoogle Scholar

[14]

Miller K.S., Ross B., An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley &Sons, New York, 1993. Google Scholar

[15]

Kilbas A., Srivastava H.M., Trujillo J.J., Theory and Applications of Fractional Differential Equations, Elsevier, San Diego, 2006. Google Scholar

[16]

Podlubny I., Fractional Differential Equations, Academic Press, San Diego, 1999. Google Scholar

[17]

Baleanu D., Golmankhaneh A., Nigmatullin R., Golmankhaneh A., Fractional Newtonian Mechanics. Central European Journal of Physics, 2010, 8(1), 120-125. Web of ScienceGoogle Scholar

[18]

Khalil R., Horani M. A., Yousef A., Sababheh M., A new definition of fractional derivative, J. Comput. Appl. Math., 2014, 264, 65-70. CrossrefWeb of ScienceGoogle Scholar

[19]

Tasbozan O., Çenesiz Y., Kurt A., New solutions for conformable fractional Boussinesq and combined KdV-mKdV equations using Jacobi elliptic function expansion method, The European Physical Journal Plus, 2016, 131, 244. Web of ScienceCrossrefGoogle Scholar

[20]

Zhang C., Shurong S., Sturm–Picone comparison theorem of a kind of conformable fractional differential equations on time scales, Journal of Applied Mathematics and Computing,2016, 1-13. Web of ScienceGoogle Scholar

[21]

Abdeljawad T., On conformable fractional calulus, J. Comput. Appl. Math., 2015, 279, 57-66. Web of ScienceCrossrefGoogle Scholar

[22]

Benkhettoua N., Hassania S., Torres D.F.M., A conformable fractional calculus on arbitrary time scales, J. King Saud Univ.Sci., 2016, 28, 93-98. CrossrefGoogle Scholar

[23]

Hammad M.A., Khalil R., Conformable Fractional Heat Equation, Int. J. of Pure Appl. Math., 2014, 94, 215-221. Google Scholar

[24]

Chung W.S., Fractional Newton mechanics with conformable fractional derivative, J. Comput. Appl. Math., 2015, 290, 150-158. CrossrefWeb of ScienceGoogle Scholar

[25]

Gökdoğan A., Ünal E., Çelik E., Existence and Uniqueness Theorems for Sequential Linear Conformable Fractional Differential Equations, Miskolc Math. Notes, 2016, 17(1),267-279. CrossrefWeb of ScienceGoogle Scholar

[26]

Eslami M., Rezazadeh H., The First integral method for Wu–Zhang system with conformable time-fractional derivative, Calcolo, . CrossrefWeb of ScienceGoogle Scholar

[27]

Eslami M., Solutions for space-time fractional (2 + 1)-dimensional dispersive long wave equations, Iranian Journal of Science and Technology, Transaction A: Science, 2016, . CrossrefGoogle Scholar

[28]

Neirameh A., New soliton solutions to the fractional perturbed nonlinear Schrodinger equation with power law nonlinearity, SeMA Journal, 2015, 1-15. Google Scholar

[29]

Atangana A., Baleanu D., Alsaedi A., New properties of conformable derivative, Open Math., 2015, 13, 889–898. Web of ScienceGoogle Scholar

[30]

Atangana A., Goufo E.F.D., Extension of matched asymptotic method to fractional boundary layers problems, Mathematical Problems in Engineering, 2014, 2014. Web of ScienceGoogle Scholar

[31]

Atangana A., Goufo E.F.D., On the mathematical analysis of Ebola hemorrhagic fever: deathly infection disease in West African countries, BioMed research international, 2014, 2014. Web of ScienceGoogle Scholar

[32]

Atangana A., A novel model for the lassa hemorrhagic fever: deathly disease for pregnant women, Neural Computing and Applications, 2015, 26(8), 1895-1903. CrossrefGoogle Scholar

[33]

Atangana A., Noutchie S.C.O, Model of break-bone fever via beta-derivatives, BioMed research international, 2014, 2014. Web of ScienceGoogle Scholar

[34]

Atangana A., Derivative with a new parameter: Theory, methods and applications, Academic Press, 2015. Google Scholar

[35]

He J.H., Wu X.H., Exp-function method for nonlinear wave equations, Chaos Solitons and Fractals, 2006, 30, 700-708. CrossrefGoogle Scholar

## Kommentare (0)

Allgemeiner Hinweis: Durch die Nutzung der Kommentarfunktion auf degruyter.com erklären Sie sich mit unserer Datenschutzerklärung einverstanden. Wir legen Wert auf einen respektvollen Umgang miteinander. Daher möchten wir Sie gerne auf unsere Hausregeln aufmerksam machen.