[1]

Yusufoğlu E., Bekir A., The tanh and the sine-cosine methods for exact solutions of the MBBM and the Vakhnenko equations, Chaos Soliton and Fractals, 2008, 38, 1126-1133. CrossrefGoogle Scholar

[2]

Filiz A., Ekici M., Sönmezoğlu A., F-Expansion Method and New Exact Solutions of the Schrödinger-KdV Equation, Scientific World Journal, 2014, . CrossrefGoogle Scholar

[3]

Liu S., Fua Z., Liu S., Zhao Q., Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations, Phys. Lett. A, 2001, 289, 69-74. CrossrefGoogle Scholar

[4]

Bekir A., Guner O., Ayhan B., Çevikel A.C., Exact Solutions for Fractional Differential-Difference Equations by (*G*′/*G*)-Expansion Method with Modified Riemann-Liouville Derivative, Adv. Appl. Math. Mech.,2016, 8, 293-305. Web of ScienceCrossrefGoogle Scholar

[5]

Çenesiz Y., Baleanu D., Kurt A., Tasbozan O., New exact solutions of Burgers’ type equations with conformable derivative., Waves in Random and Complex Media, 2017, 27(1), 103-116. CrossrefWeb of ScienceGoogle Scholar

[6]

Zhang G., Li Z., Duan Y., Exact solitary wave solutions of nonlinear wave equations, Science In China (Series A), 2001, 44, 396-401. CrossrefGoogle Scholar

[7]

Zayed E.M.E., Shorog A.J., Applications of an Extended (*G*′*G*)-Expansion Method to Find Exact Solutions of Nonlinear PDEs in Mathematical Physics, Mathematical Problems in Engineering, 2010, 2010. Web of ScienceGoogle Scholar

[8]

Hosseini K., Ansari R., New exact solutions of nonlinear conformable time-fractional Boussinesq equations using the modified Kudryashov method, Waves in Random and Complex Media, 2017, 27(4), 628-636. Web of ScienceCrossrefGoogle Scholar

[9]

Drazin P.G., Johnson R.S., Solitons, An Introduction Cambridge University Press, Cambridge (1983). Google Scholar

[10]

Golmankhaneh A.K., Golmankhaneh A.K., Baleanu D., On nonlinear fractional Klein–Gordon equation, Signal Processing, 2011, 91(3), 446-451. CrossrefWeb of ScienceGoogle Scholar

[11]

Wang D., Zhang H.Q., Auto-Bäcklund transformation and new exact solutions of (2+1)- dimensional Nizhnik-Novikov-Veselov equation, Int. J. Mod. Phys. C, 2005, 16, 393-412. CrossrefGoogle Scholar

[12]

Lou S.Y., On the coherent structures of the Nizhnik-Novikov-Veselov equation. Phys. Lett. A, 2000, 277, 94-100. CrossrefGoogle Scholar

[13]

Ren Y.J., Zhang H.Q., A generalized F-expansion method to find abundant families of Jacobi Elliptic Function solutions of the (2 + 1)-dimensional Nizhnik-Novikov-Veselov equation, Chaos Solitons and Fractals, 2006, 27, 959-979. CrossrefGoogle Scholar

[14]

Miller K.S., Ross B., An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley &Sons, New York, 1993. Google Scholar

[15]

Kilbas A., Srivastava H.M., Trujillo J.J., Theory and Applications of Fractional Differential Equations, Elsevier, San Diego, 2006. Google Scholar

[16]

Podlubny I., Fractional Differential Equations, Academic Press, San Diego, 1999. Google Scholar

[17]

Baleanu D., Golmankhaneh A., Nigmatullin R., Golmankhaneh A., Fractional Newtonian Mechanics. Central European Journal of Physics, 2010, 8(1), 120-125. Web of ScienceGoogle Scholar

[18]

Khalil R., Horani M. A., Yousef A., Sababheh M., A new definition of fractional derivative, J. Comput. Appl. Math., 2014, 264, 65-70. CrossrefWeb of ScienceGoogle Scholar

[19]

Tasbozan O., Çenesiz Y., Kurt A., New solutions for conformable fractional Boussinesq and combined KdV-mKdV equations using Jacobi elliptic function expansion method, The European Physical Journal Plus, 2016, 131, 244. Web of ScienceCrossrefGoogle Scholar

[20]

Zhang C., Shurong S., Sturm–Picone comparison theorem of a kind of conformable fractional differential equations on time scales, Journal of Applied Mathematics and Computing,2016, 1-13. Web of ScienceGoogle Scholar

[21]

Abdeljawad T., On conformable fractional calulus, J. Comput. Appl. Math., 2015, 279, 57-66. Web of ScienceCrossrefGoogle Scholar

[22]

Benkhettoua N., Hassania S., Torres D.F.M., A conformable fractional calculus on arbitrary time scales, J. King Saud Univ.Sci., 2016, 28, 93-98. CrossrefGoogle Scholar

[23]

Hammad M.A., Khalil R., Conformable Fractional Heat Equation, Int. J. of Pure Appl. Math., 2014, 94, 215-221. Google Scholar

[24]

Chung W.S., Fractional Newton mechanics with conformable fractional derivative, J. Comput. Appl. Math., 2015, 290, 150-158. CrossrefWeb of ScienceGoogle Scholar

[25]

Gökdoğan A., Ünal E., Çelik E., Existence and Uniqueness Theorems for Sequential Linear Conformable Fractional Differential Equations, Miskolc Math. Notes, 2016, 17(1),267-279. CrossrefWeb of ScienceGoogle Scholar

[26]

Eslami M., Rezazadeh H., The First integral method for Wu–Zhang system with conformable time-fractional derivative, Calcolo, . CrossrefWeb of ScienceGoogle Scholar

[27]

Eslami M., Solutions for space-time fractional (2 + 1)-dimensional dispersive long wave equations, Iranian Journal of Science and Technology, Transaction A: Science, 2016, . CrossrefGoogle Scholar

[28]

Neirameh A., New soliton solutions to the fractional perturbed nonlinear Schrodinger equation with power law nonlinearity, SeMA Journal, 2015, 1-15. Google Scholar

[29]

Atangana A., Baleanu D., Alsaedi A., New properties of conformable derivative, Open Math., 2015, 13, 889–898. Web of ScienceGoogle Scholar

[30]

Atangana A., Goufo E.F.D., Extension of matched asymptotic method to fractional boundary layers problems, Mathematical Problems in Engineering, 2014, 2014. Web of ScienceGoogle Scholar

[31]

Atangana A., Goufo E.F.D., On the mathematical analysis of Ebola hemorrhagic fever: deathly infection disease in West African countries, BioMed research international, 2014, 2014. Web of ScienceGoogle Scholar

[32]

Atangana A., A novel model for the lassa hemorrhagic fever: deathly disease for pregnant women, Neural Computing and Applications, 2015, 26(8), 1895-1903. CrossrefGoogle Scholar

[33]

Atangana A., Noutchie S.C.O, Model of break-bone fever via beta-derivatives, BioMed research international, 2014, 2014. Web of ScienceGoogle Scholar

[34]

Atangana A., Derivative with a new parameter: Theory, methods and applications, Academic Press, 2015. Google Scholar

[35]

He J.H., Wu X.H., Exp-function method for nonlinear wave equations, Chaos Solitons and Fractals, 2006, 30, 700-708. CrossrefGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.