[1]

Accardi L., Some loopholes to save quantum nonlocality, AIP Conf. Proc., 2005, 750, 1–20. CrossrefGoogle Scholar

[2]

Adenier G., Khrennikov A.Y., Is the fair sampling assumption supported by EPR experiments. J. Phys. B: At. Mol. Opt. Phys., 2007, 40, 131–141. CrossrefGoogle Scholar

[3]

Aspect A., Dalibard J., Roger G., Experimental test of Bell’s inequalities using time-varying analyzers, Phys. Rev. Lett., 1982, 49, 1804–1807. CrossrefGoogle Scholar

[4]

Ballentine L.E., Quantum Mechanics: A Modern Development. World Scientigic, Singapore, 2003 Google Scholar

[5]

Bell J.S., Speakable and Unspeakable in Quantum Mechanics. Cambridge University Press, Cambridge, 1993 Google Scholar

[6]

Bell J.S., On the Foundations of Quantum Mechanics, World Scientific, Singapore, New Jersey, London, Hong Kong, 2001 Google Scholar

[7]

Bohm D., Quantum Theory, Prentice-Hall, New York, 1951 Google Scholar

[8]

Boole G., On the theory of probabilities, Phil. Trans. R. Soc. Lond., 1862, 152, 225–252. CrossrefGoogle Scholar

[9]

Brans C., Bell’s theorem does not eliminate fully causal hidden variables, Int. J. Theor. Phys., 1987, 27, 219–226. Google Scholar

[10]

Brody T., The Philosphy Behind Physics, Springer, Berlin, 1993 Google Scholar

[11]

Brody T.A., The Suppes-Zanotti theorem and the Bell inequalities, Revista Mexicana de Física, 1989, 35, 170–187. Google Scholar

[12]

Christensen B., McCusker K., Altepeter J., Calkins B., Lim C., Gisin N., Kwiat P., Detection-loophole-free test of quantum non-locality, and applications, Phys. Rev. Lett., 2013, 111, 130406 CrossrefGoogle Scholar

[13]

Clauser J.F., Horn M.A., Experimental consequences of objective local theories, Phys. Rev. D, 1974, 10, 526–535. CrossrefGoogle Scholar

[14]

Clauser J.F., Horn M.A., Shimony A., Holt R.A. Proposed experiment to test local hidden-variable theories, Phys. Rev. Lett., 1969, 23, 880–884. CrossrefGoogle Scholar

[15]

Clauser J.F., Shimony A., Bell’s theorem: Experimental tests and implications, Rep. Prog. Phys., 1978. 41(12), 1881–1927. CrossrefGoogle Scholar

[16]

De Baere W., Mann A., Revzen M. Locality and Bell’s theorem, Found. Phys., 1999. 29, 67–77. CrossrefGoogle Scholar

[17]

de la Peña L., Cetto A.M., Brody T.A., On hidden-variable theories and Bell’s inequality, Lett. Nuovo Cim., 1972, 5, 177–181. CrossrefGoogle Scholar

[18]

de Muynck V., W. W.D., Martens H. Interpretations of quantum mechanics, joint measurement of incompatible observables and counterfactual definiteness, Found. Phys., 1994, 24, 1589–1664. CrossrefGoogle Scholar

[19]

De Raedt H., De Raedt K., Michielsen K., Keimpema K., Miyashita S., Event-based computer simulation model of Aspect-type experiments strictly satisfying Einstein’s locality conditions, J. Phys. Soc. Jpn., 2007, 76, 104005 CrossrefGoogle Scholar

[20]

De Raedt H., De Raedt K., Michielsen K., Keimpema K., Miyashita S. Event-by-event simulation of quantum phenomena: Applica tion to Einstein-Podolosky-Rosen-Bohm experiments, J. Comput. Theor. Nanosci., 2007, 4, 957–991. CrossrefGoogle Scholar

[21]

De Raedt H., Hess K., Michielsen K. Extended, Boole-Bell inequalities applicable to quantum theory, J. Comput. Theor. Nanosci., 2011, 8, 1011–1039. CrossrefGoogle Scholar

[22]

De Raedt H., Jin F., Michielsen K., Data analysis of Einstein-Podolsky-Rosen-Bohm laboratory experiments, Proc. SPIE, 2013, 8832, 88321N1–11 Google Scholar

[23]

De Raedt H., Michielsen K., Hess K., The digital computer as a metaphor for the perfect laboratory experiment: Loophole-free Bell experiments, Comp. Phys. Comm., 2016, 209, 42–47. CrossrefGoogle Scholar

[24]

De Raedt H., Michielsen K., Jin F., Einstein-Podolsky-Rosen-Bohm laboratory experiments: Data analysis and simulation. AIP Conf. Proc., 2012, 1424, 55–66. Google Scholar

[25]

De Raedt K., De Raedt H., Michielsen K., A computer program to simulate Einstein-Podolsky-Rosen-Bohm experiments with photons, Comp. Phys. Comm., 2007, 176, 642–651. CrossrefGoogle Scholar

[26]

De Raedt K., Keimpema K., De Raedt H., Michielsen K., Miyashita S., A local realist model for correlations of the singlet state, Eur. Phys. J. B, 2006, 53, 139–142. CrossrefGoogle Scholar

[27]

Eberhard P.H., Background level and counter efficiencies required for a loophole-free Einstein-Podolsky-Rosen experiment, Phys. Rev. A, 1993, 47, R747–R750. CrossrefGoogle Scholar

[28]

Einstein A., Podolsky A., Rosen N., Can quantum-mechanical description of physical reality be considered complete?, Phys. Rev., 1935, 47, 777–780. CrossrefGoogle Scholar

[29]

Fine A., On the completeness of quantum theory, Synthese, 1974, 29, 257–289. CrossrefGoogle Scholar

[30]

Fine A., Hidden variables, joint probability, and Bell inequalities, Phys. Rev. Lett., 1982, 48, 291–295. CrossrefGoogle Scholar

[31]

Fine A., Joint distributions, quantum correlations, and commuting observables, J. Math. Phys., 1982, 23, 1306–1310. CrossrefGoogle Scholar

[32]

Fine A., Some local models for correlation experiments, Synthese, 1982, 50, 279–294. CrossrefGoogle Scholar

[33]

Fine A., The Shaky Game: Einstein Realism and the Quantum Theory, University of Chicago Press, Chicago, 1996 Google Scholar

[34]

Giustina M., Versteegh M.A.M., Wengerowsky S., Handsteiner J., Hochrainer A., Phelan K., Steinlechner F., Kofler J., Larsson J.A., Abellán C., Amaya W., Pruneri V., Mitchell M.W., Beyer J., Gerrits T., Lita A.E., Shalm L.K., Nam S.W., Scheidl T., Ursin R., Wittmann B., Zeilinger A. Significant-loophole-free test of Bell’s theorem with entangled photons, Phys. Rev. Lett., 2015. 115, 250401 CrossrefGoogle Scholar

[35]

Graft D.A. The Bell inequality cannot be validly applied to the Einstein-Podolsky-Rosen-Bohm (EPRB) experiments, Phys. Essays, 2009, 22, 534–542. CrossrefGoogle Scholar

[36]

Graft D.A., Analysis of the Christensen et al. test of local realism, J. Adv. Phys., 2015, 4, 284–300. CrossrefGoogle Scholar

[37]

Grimmet G.R., Stirzaker D.R., Probability and Random Processes, Clarendon Press, Oxford, 1995 Google Scholar

[38]

Hensen B., Bernien H., Dreau A.E., Reiserer A., Kalb N., Blok M.S., Ruitenberg J., Vermeulen R.F.L., Schouten R.N., Abellan C., Amaya W., Pruneri V., Mitchell M.W., Markham M., Twitchen D.J., Elkouss D., Wehner S., Taminiau T.H., Hanson R., Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres, Nature, 2015, 15759 Google Scholar

[39]

Hess K., Einstein Was Right! Pan Stanford Publishing, Singapore, 2015 Google Scholar

[40]

Hess K., De Raedt H., Michielsen K., Counterfactual definiteness and Bell’s inequality, J. Mod. Phys., 2016, 7, 1651–1660. CrossrefGoogle Scholar

[41]

Hess K., De Raedt H., Michielsen K., From Boole to Leggett-Garg: Epistemology of Bell-type inequalities, Adv. Math. Phys., 2016, 2016, 4623040 Google Scholar

[42]

Hess K., Michielsen K., De Raedt H., Possible experience: from Boole to Bell, Europhys. Lett., 2009, 87, 60007 CrossrefGoogle Scholar

[43]

Hess K., Philipp W., A possible loophole in the theorem of Bell. Proc. Natl. Acad. Sci. USA, 2001, 98, 14224–14277. CrossrefGoogle Scholar

[44]

Hess K., Philipp W., Bell’s theorem and the problem of decidability between the views of Einstein and Bohr, Proc. Natl. Acad. Sci. USA, 2001, 98, 14228–14233. CrossrefGoogle Scholar

[45]

Hess K., Philipp W., Bell’s theorem: Critique of proofs with and without inequalities, AIP Conf. Proc., 2005, 750, 150–157. CrossrefGoogle Scholar

[46]

Jaynes E.T., Clearing up mysteries - The original goal. In: J. Skilling, ed., Maximum Entropy and Bayesian Methods, Kluwer Academic Publishers, Dordrecht, 1989, 36, 1–27 Google Scholar

[47]

Khrennikov A., EPR-Bohm experiment and interference of probabilities. Found. Phys. Lett., 2004, 17, 691–700. CrossrefGoogle Scholar

[48]

Khrennikov A., Bell’s inequality: Nonlocalty, “death of reality”, or incompatibility of random variables? AIP Conf. Proc., 2007, 962, 121–131. CrossrefGoogle Scholar

[49]

Khrennikov A., Nonlocality as well as rejection of realism are only sufficient (but non-necessary!) conditions for violation of Bell’s inequality. Inf. Sciences, 2009, 179, 492–504. CrossrefGoogle Scholar

[50]

Khrennikov A., After Bell, Fortschritte der Physik, 2017, 65, 1600044 CrossrefGoogle Scholar

[51]

Khrennikov A.Y., Interpretations of Probability, VSP Int. Sc. Publishers, Utrecht, 1999 Google Scholar

[52]

Khrennikov A.Y., Amathematicians viewpoint to Bell’s theorem: in memory of Walter Philipp, AIP Conf. Proc., 2007, 889, 7–17. CrossrefGoogle Scholar

[53]

Khrennikov A.Y., Contextual Approach to Quantum Formalism. Springer, Berlin, 2009 Google Scholar

[54]

Khrennikov A.Y., Violation of Bell’s inequality and non- Kolmogorovness, AIP Conf. Proc., 2009, 1001, 86 Google Scholar

[55]

Khrennikov A.Y., On the role of probabilistic models in quantumphysics: Bell’s inequality and probabilistic incompatibility, J. Comput. Theor. Nanosci., 2011, 8, 1006–1010. Google Scholar

[56]

Khrennikov A.Y., Volovich Y., Discrete time dynamical models and their quantum-like context-dependent properties, J. Mod. Opt., 2004, 51, 1113–1114. CrossrefGoogle Scholar

[57]

Kocher C.A., Commins E.D., Polarization correlation of photons emitted in an atomic cascade. Phys. Rev. Lett., 1967, 18, 575–577. CrossrefGoogle Scholar

[58]

Kofler J., Giustina M., Larsson J.Å., Mitchell M., Requirements for a loophole-free photonic bell test using imperfect setting gen erators, Phys. Rev. A, 2016, 93, 032115 CrossrefGoogle Scholar

[59]

Kolmogorov A., Foundations of the Theory of Probability, Chelsea Publishing Co., New York, 1956 Google Scholar

[60]

Kracklauer A.F., Bell’s inequalities and EPR-B experiments: Are they disjoint?, AIP Conf. Proc., 2005, 750, 219–227. CrossrefGoogle Scholar

[61]

Kupczynski M., On some tests of completeness of quantummechanics. Phys. Lett. A, 1986, 116, 417–419. CrossrefGoogle Scholar

[62]

Kupczynski M. Bertrand’s paradox and Bell’s inequalities. Phys. Lett. A, 1987, 121, 205–207. CrossrefGoogle Scholar

[63]

Kupczynski M., Entanglement and Bell inequalities, J. Russ. Las. Res., 2005, 26, 514–523. CrossrefGoogle Scholar

[64]

Kupczynski M., Entanglement and quantum nonlocality demystified, AIP Conf. Proc., 2012, 1508(1), 253–264. 10.1063/1.3567465 Google Scholar

[65]

Kupczynski M., Causality and local determinism versus quantum nonlocality, J. Phys.: Conference Series, 2014, 504(1), 012015 Google Scholar

[66]

Kupczynski M., Entanglement and quantumnonlocality demystified. Found. Phys., 2015, 45, 735–753. Google Scholar

[67]

Kupczynski M., EPR paradox, quantum nonlocality and physical reality, Journal of Physics: Conference Series, 2016, 701(1), 012021 Google Scholar

[68]

Larsson J.Å., Loopholes in Bell inequality tests of local realism, J. Phys. A: Math. Theor., 2014, 47, 424003 CrossrefGoogle Scholar

[69]

Leggett A.J., Garg A., Quantum Mechanics versus Macroscopic Realism: Is the Flux There when Nobody Looks. Phys. Rev. Lett.,1985, 9, 857–860. Google Scholar

[70]

Loubenets E., “Local Realism”, Bell’s Theorem and Quantum “Locally Realistic” Inequalities, Found. Phys., 2005, 35, 2051–2072. CrossrefGoogle Scholar

[71]

Matzkin A., Is Bell’s theorem relevant to quantum mechanics? On locality and non-commuting observables, AIP Conf. Proc., 2009, 1101, 339–348. Google Scholar

[72]

Michielsen K., De Raedt H., Event-based simulation of quantum physics experiments, Int. J. Mod. Phys. C, 2014, 25, 01430003 CrossrefGoogle Scholar

[73]

Morgan P., Bell inequalities for random fields, J. Phys. A, 2006, 39, 7441–7445. CrossrefGoogle Scholar

[74]

de Muynck W.M., The Bell inequalities and their irrelevance to the problem of locality in quantum mechanics, Phys. Lett. A, 1986, 114, 65–67. CrossrefGoogle Scholar

[75]

Nieuwenhuizen T., Kupczynski M., The contextuality loophole is fatal for the derivation of Bell inequalities: Reply to a comment by I. Schmelzer, Found. Phys., 2017, 47, 316–319. CrossrefGoogle Scholar

[76]

Nieuwenhuizen T.M., Where Bell went wrong, AIP Conf. Proc., 2009, 1101, 127–133. Google Scholar

[77]

Nieuwenhuizen T.M., Is the contextuality loophole fatal for the derivation of Bell inequalities?, Found. Phys., 2011, 41, 580–591. CrossrefGoogle Scholar

[78]

Pascazio S. Time and Bell-type inequalities, Phys. Lett. A, 1986, 118, 47–53. CrossrefGoogle Scholar

[79]

Pearl J., Causality: models, reasoning, and inference, Cambridge University Press, Cambridge, 2000 Google Scholar

[80]

Pearle P.M., Hidden-variable example based upon data rejection, Phys. Rev. D, 1970, 2, 1418–1425. CrossrefGoogle Scholar

[81]

Pitowsky I., Resolution of the Einstein-Podolsky-Rosen and Bell Paradoxes, Phys. Rev. Lett., 1982, 48, 1299–1302. CrossrefGoogle Scholar

[82]

Pitowsky I., Correlation polytopes: Their geometry and complex- ity. Math. Program., 1991, 50, 395–414. CrossrefGoogle Scholar

[83]

Pitowsky I., George Boole’s ‘Conditions of Possible Experience’ and the Quantum Puzzle, Brit. J. Phil. Sci., 1994, 45, 95–125. CrossrefGoogle Scholar

[84]

Santos E., Bell’s theorem and the experiments: Increasing empirical support to local realism? Stud. Hist. Phil. Mod. Phys., 2005, 36, 544–565. CrossrefGoogle Scholar

[85]

Shalm L.K., Meyer-Scott E., Christensen B.G., Bierhorst P., Wayne M.A., Stevens M.J., Gerrits T., Glancy S., Hamel D.R., Allman M.S., Coakley K.J., Dyer S.D., Hodge C., Lita A.E., Verma V.B., Lambrocco C., Tortorici E., Migdall A.L., Zhang Y., Kumor D., Farr W.H., Marsili F., Shaw M.D., Stern J.A., Abellán C., Amaya W., Pruneri V., Jennewein T., Mitchell M.W., Kwiat P.G., Bienfang J.C., Mirin R.P., Knill E., Nam S.W., Strong loophole-free test of local realism, Phys. Rev. Lett., 2015, 115, 250402 CrossrefGoogle Scholar

[86]

Sica L., Bell’s inequalities I: An explanation for their experimental violation, Opt. Comm., 1999, 170, 55–60. Google Scholar

[87]

Suppes P., Zanotti M., When are probabilistic explanations possible?, Synthese, 1981, 48, 191–199. CrossrefGoogle Scholar

[88]

Vorob’ev N.N., Consistent families of measures and their extensions, Theor. Probab. Appl., 1962, 7, 147–162. CrossrefGoogle Scholar

[89]

Weihs G., Jennewein T., Simon C., Weinfurther H., Zeilinger A., Violation of Bell’s inequality under strict Einstein locality conditions, Phys. Rev. Lett., 1998, 81, 5039–5043. CrossrefGoogle Scholar

[90]

Zhao S., De Raedt H., Michielsen K, Event-by-event simulation model of Einstein-Podolsky-Rosen-Bohm experiments, Found. Phys., 2008, 38, 322–347. CrossrefGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.