[1]

Bell J.S., On the Einstein-Podolsky-Rosen paradox, Physics, 1965, 1, 195. Google Scholar

[2]

Bell J.S., Speakable and Unspeakable in Quantum Mechanics, Cambridge UP, Cambridge, 2004. Google Scholar

[3]

Aspect A., Grangier P., Roger G., Experimental test of Bell’s inequalities using time-varying analyzers, Phys. Rev. Lett. 1982, 49, 1804-1807. CrossrefGoogle Scholar

[4]

Weihs G., Jennewein T., Simon C., Weinfurther H., Zeilinger A., Violation of Bell’s inequality under strict Einstein locality conditions, Phys. Rev. Lett., 1998, 81, 5039-5043. CrossrefGoogle Scholar

[5]

Christensen B.G., McCusker K.T., Altepeter J.B., Calkins B., Lim C.C.W., Gisin N., Kwiat P.G., Detection-loophole-free test of quantum nonlocality, and applications, Phys. Rev. Lett., 2013, 111, 130406. CrossrefGoogle Scholar

[6]

Hensen B., Bernien H., Dreau A.E., Reiserer A., Kalb N., Blok M.S. et al., Loopholefree Bell inequality violation using electronspins separated by 1.3 kilometres, Nature, 2015, 15759. Google Scholar

[7]

Giustina M., Versteegh M.A.M., Wengerowsky S., Handsteiner J., Hochrainer A., Phelan K. et al., Significant-loophole-free test of Bell’s theorem with entangled photons, Phys. Rev. Lett., 2015, 115, 250401. CrossrefGoogle Scholar

[8]

Shalm L.K., Meyer-Scott E., Christensen B.G., Bierhorst P., Wayne M.A., Stevens M.J. et al., Strong loophole-free test of local realism, Phys. Rev. Lett., 2015, 115, 250402. CrossrefGoogle Scholar

[9]

Kupczynski M., Bell Inequalities, Experimental Protocols and Contextuality. Found. Phys., 2015, 45, 735-753. CrossrefGoogle Scholar

[10]

Kupczynski M., EPR Paradox, Quantum Nonlocality and Physical Reality. J. Phys. Conf. Ser., 2016, 701, 012021. CrossrefGoogle Scholar

[11]

Kupczynski M., Can we close the Bohr-Einstein quantum debate?, Phil.Trans.R.Soc.A., 2017, 20160392., CrossrefGoogle Scholar

[12]

Accardi L., Topics in quantum probability, Phys. Rep. 1981, 77, 169-192. CrossrefGoogle Scholar

[13]

Accardi L., Some loopholes to save quantum nonlocality, AIP Conf. Proc, 2005, 750, 1-19. CrossrefGoogle Scholar

[14]

Accardi L. and Uchiyama S., Universality of the EPR-chameleon model, AIP Conf. Proc., 2007, 962, 15-27. CrossrefGoogle Scholar

[15]

Aerts D., A possible explanation for the probabilities of quantum mechanics, J. Math. Phys., 1986, 27, 202-209. CrossrefGoogle Scholar

[16]

Fine A., Hidden variables, joint probability and the Bell inequalities, Phys. Rev. Lett., 1982, 48, 291-295. CrossrefGoogle Scholar

[17]

Fine A., Joint distributions, quantumcorrelations, and commuting observables. J. Math. Phys.1982, 23, 1306-1310. CrossrefGoogle Scholar

[18]

Hess K., Philipp W., A possible loophole in the theorem of Bell, Proc. Natl. Acad. Sci. USA, 2001, 98, 14224-14227. CrossrefGoogle Scholar

[19]

Hess K. and Philipp W., A possible loophole in the Bell’s theorem and the problem of decidability between the views of Einstein and Bohr, Proc. Natl. Acad. Sci., 2001, 98, 14228-142233. CrossrefGoogle Scholar

[20]

Hess K., and Philipp W., Bell’s theorem: critique of proofs with and without inequalities. AIP Conf. Proc., 2005, 750, 150-157. CrossrefGoogle Scholar

[21]

Hess K., Michielsen K. and De Raedt H., Possible Experience: from Boole to Bell. Europhys. Lett., 2009, 87, 60007. CrossrefGoogle Scholar

[22]

Hess K., De Raedt H., and Michielsen K., Hidden assumptions in the derivation of the theorem of Bell, Phys. Scr. 2012, T151, 014002. CrossrefGoogle Scholar

[23]

Hess K., Einstein Was Right!, Pan, Stanford, 2014. Google Scholar

[24]

Jaynes E.T., Clearing up mysteries - The original goal, In: Skilling J. (Ed.), Maximum Entropy and Bayesian Methods Vol. 36, Kluwer Academic Publishers, Dordrecht, 1989, 1-27. Google Scholar

[25]

Khrennikov A.Yu., Interpretation of Probability, VSP, Utrecht, 1999. Google Scholar

[26]

Khrennikov A.Yu., and Volovich I.V., Quantum non-locality, EPR model and Bell’s theorem, In: Semikhatov A. et al.(Eds.), Proceedings 3rd International Sakharov Conference on Physics (June 24-29, 2002, Moscow, Russia), World Scientific, Singapore, 2003, 260-267. Google Scholar

[27]

Khrennikov A. Yu., Bell’s inequality: nonlocality, “death of reality”, or incompatibility of random variables, AIP Conf. Proc., 2007, 962, 121. CrossrefGoogle Scholar

[28]

Khrennikov A. Yu., Violation of Bell’s inequality and nonKolmogorovness. AIP Conf. Proc., 2009, 1101, 86. Google Scholar

[29]

Khrennikov A. Yu., Bell’s inequality: physics meets probability, Information Science, 2009, 179, 492-504. Google Scholar

[30]

Khrennikov A. Yu., Contextual Approach to Quantum Formalism, Springer, Dortrecht, 2009. Google Scholar

[31]

Khrennikov A. Yu., Ubiquitous Quantum Structure, Springer, Berlin, 2010. Google Scholar

[32]

Khrennikov A. Yu., CHSH inequality: Quantum probabilities as classical conditional probabilities, Found. of Phys., 2015, 45, 711. CrossrefGoogle Scholar

[33]

Khrennikov A. Yu., After Bell, Fortschritte der Physik, 2016, 6-8, CrossrefGoogle Scholar

[34]

Kupczynski. M., New test of completeness of quantum mechanics, Preprint: IC/84/242, 1984. Google Scholar

[35]

Kupczynski M., On some new tests of completeness of quantum mechanics, Phys.Lett. A, 1986, 116, 417-419. CrossrefGoogle Scholar

[36]

Kupczynski M., Pitovsky model and complementarity, Phys. Lett. A, 1987, 121, 51-53. CrossrefGoogle Scholar

[37]

Kupczynski M., Bertrand’s paradox and Bell’s inequalities, Phys. Lett. A, 1987, 121, 205-207. CrossrefGoogle Scholar

[38]

Kupczynski M., On the completeness of quantum mechanics, 2002, arXiv:quant-ph/028061 Google Scholar

[39]

Kupczynski M., Entanglement and Bell inequalities. J. Russ. Laser Res., 2005, 26, 514-523. CrossrefGoogle Scholar

[40]

Kupczynski M., Seventy years of the EPR paradox, AIP Conf. Proc., 2006, 861, 516-523. CrossrefGoogle Scholar

[41]

Kupczynski M., EPR paradox, locality and completeness of quantum, AIP Conf. Proc., 2007, 962, 274-285. CrossrefGoogle Scholar

[42]

Kupczynski M., Entanglement and quantum nonlocality demystified, AIP Conf. Proc., 2012, 1508, 253-264. Google Scholar

[43]

Kupczynski M., On operational approach to entanglement and how to certify it, International Journal of Quantum Information, 2016, 14, 1640003. CrossrefGoogle Scholar

[44]

Kupczynski M., Causality and local determinism versus quantum nonlocality, J. Phys.Conf. Ser, 2014, 504 012015, CrossrefGoogle Scholar

[45]

De Muynck V. M., De Baere W., Martens H., Interpretations of quantum mechanics, joint measurement of incompatible observables and counterfactual definiteness, Found. Phys. 1994, 24, 1589-1664. CrossrefGoogle Scholar

[46]

De Muynck W.M., Foundations of Quantum Mechanics, Kluver Academic, Dordrecht, 2002 Google Scholar

[47]

Nieuwenhuizen T.M., Where Bell went wrong, AIP Conf. Proc., 2009, 1101, 127-133. Google Scholar

[48]

Nieuwenhuizen T.M., Is the contextuality loophole fatal for the derivation of Bell inequalities, Found. Phys. 2011, 41, 580-591. CrossrefGoogle Scholar

[49]

Nieuwenhuizen T.M., Kupczynski M., The contextuality loophole is fatal for derivation of Bell inequalities: Reply to a Comment by I. Schmelzer. Found. Phys., 2017, 47, 316-319, CrossrefGoogle Scholar

[50]

De la Peńa L., Cetto A.M., Brody T.A., On hidden variable theories and Bell’s inequality, Lett. Nuovo Cimento, 1972, 5, 177. CrossrefGoogle Scholar

[51]

Pitovsky I., Deterministic model of spin statistics, Phys. Rev. D, 1983, 27, 2316-2326. CrossrefGoogle Scholar

[52]

Pitovsky I., George Boole’s conditions of possible experience and the quantum puzzle, Brit. J. Phil. Sci., 1994, 45, 95-125. CrossrefGoogle Scholar

[53]

De Raedt H., Hess K., Michielsen K., Extended Boole-Bell inequalities applicable to Quantum Theory, J. Comp. Theor. Nanosci., 2011, 8, 10119. Google Scholar

[54]

Adenier G., Khrennikov A.Yu., Is the fair sampling assumption supported by EPR experiments?, J. Phys. B: Atom. Mol. Opt. Phys., 2007, 40, 131-141. CrossrefGoogle Scholar

[55]

De Raedt H., Michielsen K., F. Jin, Einstein-Podolsky-Rosen-Bohm laboratory experiments: Data analysis and simulation, AIP Conf. Proc., 2012, 1424, 55-66. Google Scholar

[56]

De Raedt H., Jin F., Michielsen K., Data analysis of Einstein-Podolsky-Rosen-Bohm laboratory experiments. Proc. of SPIE, 2013, 8832, 88321N1-11. Google Scholar

[57]

Adenier G., Khrennikov A.Yu., Test of the no-signaling principle in the Hensen loophole-free CHSH experiment, Fortschritte der Physik, 2017, (in press), CrossrefGoogle Scholar

[58]

Bednorz A., Analysis of assumptions of recent tests of local realism, Phys. Rev. A, 2017, 95, 042118. CrossrefGoogle Scholar

[59]

Bertrand J., Calcul des Probabilités, Gauthier-Villars, Paris, 1889. Google Scholar

[60]

Gnedenko B.V., The Theory of Probability, Chelsea, New York, 1962. Google Scholar

[61]

Bohr N., Essays 1958-1962 on Atomic Physics and Human Knowledge. Wiley, NY, 1963. Google Scholar

[62]

Einstein A.: In: Schilpp, P. A. (ed).: Albert Einstein: Philosopher–Scientist. Harper and Row, NY, 1949. Google Scholar

[63]

Einstein A., Physics and Reality. Journal of the Franklin Institute, 1936, 221, 349. CrossrefGoogle Scholar

[64]

Einstein A., Podolsky B., Rosen N., Can Quantum-Mechanical Description of Physical Reality Be Considered Complete, Phys. Rev., 1935, 47, 777. CrossrefGoogle Scholar

[65]

Bohm D., Quantum Theory, Prentice-Hall, New York, 1951. Google Scholar

[66]

Clauser J. F., Horne M. A., Shimony A. and Holt R. A., Proposed Experiment to Test Local Hidden-Variable Theories, Phys. Rev. Lett., 1969, 23, 880. CrossrefGoogle Scholar

[67]

Clauser J. F. and Horne M. A., Experimental consequences of objective local theories, Phys. Rev. D, 1974, 10, 526. CrossrefGoogle Scholar

[68]

Eberhard P. H., Background level and counter eflciencies required for a loophole-free Einstein-Podolsky-Rosen experiment, Phys. Rev. A, 1993, 47, 747. CrossrefGoogle Scholar

[69]

Gisin N., Quantumnonlocality: how does nature do it? Science, 2009. 326, 1357-1358. CrossrefGoogle Scholar

[70]

Valdenebro A., Assumptions underlying Bell’s inequalities, Eur. Jour. of Physics, 2002, 23, 569-577. CrossrefGoogle Scholar

[71]

Larsson J.-A., Loopholes in Bell inequality tests of local realism, J. Phys. A: Math. Theor., 2014, 47, 424003. CrossrefGoogle Scholar

[72]

Pascazio, S., Time and Bell–type inequalities. Phys. Lett. A, 1986, 118, 47-53. CrossrefGoogle Scholar

[73]

Larsson, J.-.A. and Gill R.D., Bell’s inequality and the coincidence-time loophole. Europhys. Lett., 2004, 67, 707-13. CrossrefGoogle Scholar

[74]

De Raedt H., De Raedt K., Michielsen K., Keimpema K., Miyashita S., Event-based computer simulation model of Aspect-type experiments strictly satisfying Einstein’s locality conditions, J. Phys. Soc. Jap., 2007, 76, 104005. CrossrefGoogle Scholar

[75]

De Raedt K., De Raedt H., Michielsen K., A computer program to simulate Einstein-Podolsky-Rosen-Bohm experiments with photons, Comp. Phys. Comm., 2007, 176, 642-651. CrossrefGoogle Scholar

[76]

De Raedt H., De Raedt K., Michielsen K., Keimpema K., and Miyashita S., Event-by-event simulation of quantum phenomena: Application to Einstein-Podolsky-Rosen-Bohm experiments, J. Comput. Theor. Nanosci., 2007, 4, 957-991. CrossrefGoogle Scholar

[77]

Zhao S., De Raedt H., Michielsen K., Event-by-event simulation model of Einstein-Podolsky-Rosen-Bohm experiments, Found. Phys., 2008, 38, 322- 347. CrossrefGoogle Scholar

[78]

Michielsen K., De Raedt H., Event-based simulation of quantum physics experiments, Int. J. Mod. Phys. C, 2014, 25, 143000366. Google Scholar

[79]

De Raedt H., Michielsen K., Hess K., The photon identification loophole in EPRB experiments:computer models with singlewing selection, 2017, arXiv:1707.08307 v2 Google Scholar

[80]

De Raedt K., Keimpema K., De Raedt H., Michielsen K., Miyashita S., A local realist model for correlations of the singlet state, Euro. Phys. J. B, 2006, 53, 139-142. CrossrefGoogle Scholar

[81]

De Raedt H., Michielsen K., Miyashita S., Keimpema K., Reply to Comment on “A local realist model for correlations of the singlet state”, Euro. Phys. J. B, 2007, 58, 55-59. CrossrefGoogle Scholar

[82]

Kochen S., Specker E. P., The problem of hidden variables in quantum mechanics, J. Math. Mech., 1967, 17, 59-87. Google Scholar

[83]

Lin P.S., Rosset D., Zhang Y., Bancal J.D., Liang Y.C., Taming finite statistics for device-independent quantum information, 2017, arXiv:1705.09245 Google Scholar

[84]

Zhang Y., Glancy S., Knill E., Asymptotically optimal data analysis for rejecting local realism, Phys. Rev. A, 2011, 84, 062118. CrossrefGoogle Scholar

[85]

Christensen B.G., Liang Y.-C., Brunner N., Gisin N., Kwiat P., Exploring the limits of quantum nonlocality with entangled photons, Phys. Rev. X 5, 2015 041052. Google Scholar

[86]

Kupczynski M., De Raedt H., Breakdown of statistical inference from some random experiments, Comp. Physics Communications, 2016, 200,168. CrossrefGoogle Scholar

[87]

Kupczynski M., Significance tests and sample homogeneity loophole, 2015, arXiv:1505.06349 Google Scholar

[88]

Leek J.T., Peng R.D., Statistics: P values are just the tip of the iceberg, Nature 2015, 520, 612, CrossrefGoogle Scholar

[89]

Larsson J.-A., Giustina M., Kofler J., Wittman B., Ursin R. and Ramelow S., Bell violation with entangled photons, free of the coincidence-time loophole, Phys. Rev. A, 2014, 90, 032107. CrossrefGoogle Scholar

[90]

Kofler J., Ramelow S., Giustina M., Zeilinger A., On Bell violation using entangled photonswithout the fair-sampling assumption, 2014, arXiv:1307.6475 Google Scholar

[91]

Wigner E.P., On Hidden Variables and Quantum Mechanical Probabilities, American Journal of Physics, 1970, 38, 1005. CrossrefGoogle Scholar

[92]

Dzhafarov E.N., Kujala J.V., Selectivity in probabilistic causality: Where psychology runs into quantum physics, J. Math. Psych., 2012, 56, 54-63. CrossrefGoogle Scholar

[93]

Dzhafarov E.N., Kujala J.V., No-Forcing and No-Matching theorems for classical probability applied to quantum mechanics, 2014, Found. Phys., 2014, 44, 248-65. CrossrefGoogle Scholar

[94]

Aerts D., Sozzo S., Veloz T., New fundamental evidence of non-classical structure in the combination of natural concepts, Philosophical Transactions of the Royal Society A, 2015, 374, Is Einsteinian no-signalling violated in Bell tests? Ë 753 20150095. Google Scholar

[95]

Grössing G., Fussy S., Mesa Pascasio J., Schwabl H., Relational causality and classical probability: Grounding quantum phenomenology in a superclassical theory, J. Phys.Conf. Ser. 2014, 504, 012006. CrossrefGoogle Scholar

[96]

Cetto A. M., de la Pena L., Valdes-Hernandez A., Emergence of quantization: the spin of the electron, J. Phys. Conf. Ser. 2014, 504, 012007. CrossrefGoogle Scholar

[97]

Kupczynski M., Tests for the purity of the initial ensemble of states in scattering experiments, Lett. Nuovo Cimento, 1974, 11, 121-124. CrossrefGoogle Scholar

[98]

Kupczynski M., On some important statistical tests, Riv. Nuovo Cimento, 1977, 7, 215-227. CrossrefGoogle Scholar

[99]

Kupczynski M., Is quantum theory predictably complete?, Phys. Scr., 2009, T135, 014005. CrossrefGoogle Scholar

[100]

Kupczynski M., Time series, stochastic processes and completeness of quantum theory, AIP. Conf. Proc., 2011, 1327, 394-400. Google Scholar

[101]

Box G.E.P., Jenkins G.M., Reinsel G.C., Time Series Analysis Forecasting and Control, Wiley, Hoboken, 2008. Google Scholar

[102]

Kupczynski M., Is Hilbert space language too rich. Int. J. Theor. Phys., 1973, 79, 319-343, reprinted in: Hooker, C.A (ed).Physical Theory as Logico-Operational Structure, 89-113. Reidel, Dordrecht, 1978. Google Scholar

[103]

Ballentine L.E., Quantum Mechanics: A Modern Development, World Scientific, Singapore, 1998. Google Scholar

[104]

Allahverdyan A.E., Balian R., Nieuwenhuizen T.M., Understanding quantummeasurement from the solution of dynamical models, Physics Reports, 2013, 525, 1-166. CrossrefGoogle Scholar

[105]

Allahverdyan A.E., Balian R., Nieuwenhuizen T.M., A subensemble theory of ideal quantummeasurement processes. Annals of Physics, 2017, 376C, 324. Google Scholar

[106]

Kupczynski M., Contextual Observables and QuantumInformation, 2004, arXiv:quant-ph/0408002 Google Scholar

[107]

Svozil K., Quantum hocus-pocus, ESEP, 2016, 16, 25-30, CrossrefGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.