[1]

Clarkson C.R., Jensen J.L., Chipperfield S., Unconventional gas reservoir evaluation: What do we have to consider?, J. Nat. Gas Sci. Eng., 2012, 8(9), 9-33. CrossrefGoogle Scholar

[2]

Zou C., Yang Z., Zhang G., Hou L., Zhu R., Tao S., Yuan X., Dong D., Wang Y., Guo Q., Conventional and unconventional petroleum “orderly accumulation”: Concept and practical significance, Petrol. Explor. Dev+, 2014, 41(1), 14-30. CrossrefWeb of ScienceGoogle Scholar

[3]

Jia C., Zhang Y., Zhao X., Prospects of and challenges to natural gas industry development in China, Nat. Gas Ind., 2014, 1(1), 1-13. Google Scholar

[4]

Yilmaz K., Umul B., Davis J., Nilson G., Tight gas development in the Mezardere Formation, Thrace Basin Turkey, J. Nat. Gas Sci. Eng., 2016, 33, 551-561. CrossrefWeb of ScienceGoogle Scholar

[5]

Dou H., Zhang H., Yao S., Zhu D., Sun T., Shiying M.A., Wang X., Measurement and evaluation of the stress sensitivity in tight reservoirs, Petrol. Explor. Dev+, 2016, 43(6), 1116-1123. CrossrefWeb of ScienceGoogle Scholar

[6]

Yuan B., Wood D.A., Yu W., Stimulation and hydraulic fracturing technology in natural gas reservoirs: Theory and case studies (2012–2015), J. Nat. Gas Sci. Eng., 2015, 26(March), 1414-1421. Web of ScienceGoogle Scholar

[7]

Kim T.H., Park K., Choi J., Lee K.S., Integrated reservoir flow and geomechanical model to generate type curves for pressure transient responses in shale gas reservoirs, 2015. Google Scholar

[8]

Tutuncu A.N., Bui B.T., A coupled geomechanics and fluid flow model for induced seismicity prediction in oil and gas operations and geothermal applications, J. Nat. Gas Sci. Eng., 2015, 29, 110-124. Web of ScienceGoogle Scholar

[9]

Gao H., Li H.A., Pore structure characterization, permeability evaluation and enhanced gas recovery techniques of tight gas sandstones, J. Nat. Gas Sci. Eng., 2016, 28, 536-547. Web of ScienceCrossrefGoogle Scholar

[10]

Wei Z., Zhang D., Coupled fluid-flow and geomechanics for triple-porosity/dual-permeability modeling of coalbed methane recovery, Int. J. Rock Mech. Min., 2010, 47(8), 1242-1253. CrossrefGoogle Scholar

[11]

Zheng J., Ju Y., Liu H.H., Zheng L., Wang M., Numerical prediction of the decline of the shale gas production rate with considering the geomechanical effects based on the two-part Hooke’s model, Fuel, 2016, 185, 362-369. Web of ScienceCrossrefGoogle Scholar

[12]

Wang H., Marongiu-Porcu M., Impact of shale gas apparent permeability on production: combined effects of non-Darcy flow/gas slippage, desorption, and geomechanics (SPE-173196-PA), Spe Reserv. Eval. Eng., 2015, 18(4), 495-507. Google Scholar

[13]

Kim J., Moridis G.J., Development of the T+M coupled flow-geomechanical simulator to describe fracture propagation and coupled flow-thermal-geomechanical processes in tight/shale gas systems, Comput. Geosci-Uk., 2013, 60, 184-198. CrossrefGoogle Scholar

[14]

Han J., Wang J.Y., Puri V., A fully coupled geomechanics and fluid flow model for proppant pack failure and fracture conductivity damage analysis, J. Nat. Gas Sci. Eng., 2016, 31, 546-554. CrossrefWeb of ScienceGoogle Scholar

[15]

Ren G., Jiang J., Younis R.M., A fully coupled XFEM-EDFM model for multiphase flow and geomechanics in fractured tight gas reservoirs, Procedia Comput. Sci., 2016, 80, 1404-1415. CrossrefGoogle Scholar

[16]

Yu W., Sepehrnoori K., Simulation of gas desorption and geomechanics effects for unconventional gas reservoirs, Fuel, 2014, 116(1), 455-464. Web of ScienceCrossrefGoogle Scholar

[17]

Yang D., Moridis G.J., Blasingame T.A., A fully coupled multiphase flow and geomechanics solver for highly heterogeneous porous media, J. Comput. Appl. Math., 2014, 270(270), 417-432. CrossrefWeb of ScienceGoogle Scholar

[18]

Ostojic J., Rezaee R., Bahrami H., Production performance of hydraulic fractures in tight gas sands, a numerical simulation approach, J. Petrol. Sci. Eng., 2012, 88–89(2), 75-81. Web of ScienceGoogle Scholar

[19]

Soliman M.Y., Daal J., East L., Fracturing unconventional formations to enhance productivity, J. Nat. Gas Sci. Eng., 2012, 8(8), 52-67. CrossrefGoogle Scholar

[20]

Wang H., Liao X., Lu N., Cai Z., Liao C., Dou X., A study on development effect of horizontal well with SRV in unconventional tight oil reservoir, J. Energy Inst., 2014, 87(2), 114-120. CrossrefWeb of ScienceGoogle Scholar

[21]

Lu D., Du X., Xu C., Analytical solutions to principle of effective stress, Chinese J. Geotec. Eng., 2013, 35, 146-151. Google Scholar

[22]

Chen Z., Liao X., Zhao X., Zhu L., Liu H., Performance of multiple fractured horizontal wells with consideration of pressure drop within wellbore, J. Petrol. Sci. Eng., 2016, 146, 677-693. Web of ScienceCrossrefGoogle Scholar

[23]

Song H., Yu M., Zhu W., Wu P., Yu L., Wang Y., Killough J., Numerical investigation of gas flow rate in shale gas reservoirs with nanoporous media, Int. J. Heat Mass Tran., 2015, 80(4), 626-635. Web of ScienceCrossrefGoogle Scholar

[24]

Liu J., Wang J., Chen Z., Wang S., Elsworth D., Jiang Y., Impact of transition from local swelling to macro swelling on the evolution of coal permeability, Int. J. Coal Geol., 2011, 88(1), 31-40. CrossrefWeb of ScienceGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.