[1]

Podlubny I., Fractional differential equations, Academic, San Diego, 1999 Google Scholar

[2]

Kilbas A.A., Srivastava H.M., Trujillo J.J., Theory and applications of fractional differential equations, Elsevier, Amsterdam, 2006 Google Scholar

[3]

Mainardi F., Fractional calculus and waves in linear viscoelasticity, Imperial College, London, 2010 Google Scholar

[4]

Băleanu D., Diethelm K., Scalas E., Trujillo J.J., Fractional calculus models and numerical methods – Series on complexity, nonlinearity and chaos, World Scientific, Boston, 2012 Google Scholar

[5]

Song L., Xu S., Yang J., Dynamical models of happiness with fractional order, Commun. Nonlinear Sci. Numer. Simul., 2010, 15, 616-628 Web of ScienceCrossrefGoogle Scholar

[6]

Gu R., Xu Y., Chaos in a fractional-order dynamical model of love and its control, In: Li S., Wang X., Okazaki Y., Kawabe J., Murofushi T., Guan L. (Eds.), Nonlinear mathematics for uncertainty and its applications – Advances in intelligent and soft computing, Vol. 100, Springer, Berlin, 2011, 349-356 Google Scholar

[7]

Rossikhin Y.A., Shitikova M.V., Applications of fractional calculus to dynamic problems of linear and nonlinear hereditary mechanisms of solids, Appl. Mech. Rev., 1997, 50, 15-67 CrossrefGoogle Scholar

[8]

Scott-Blair G.W., Analytical and integrative aspects of the stress-strain-time problem, J. Scientific Instruments, 1944, 21, 80-84 CrossrefGoogle Scholar

[9]

Scott-Blair G.W., The role of psychophysics in rheology, J. Colloid Sciences, 1947, 2, 21-32 CrossrefGoogle Scholar

[10]

Scott-Blair G.W., Survey of general and applied rheology, Pitman, London, 1949 Google Scholar

[11]

Bland D.R., The theory of linear viscoelasticity, Pergamon, Oxford, 1960 Google Scholar

[12]

Koeller R.C., Applications of fractional calculus to the theory of viscoelasticity, J. Appl. Mech., 1984, 51, 299-307 CrossrefGoogle Scholar

[13]

Caputo M., Linear models of dissipation whose Q is almost frequency independent, Part II, Geophys. J. R. Astr. Soc., 1967, 13, 529-539 CrossrefGoogle Scholar

[14]

Bagley R.L., Torvik P.J., A generalized derivative model for an elastomer damper, Shock Vib. Bull., 1979, 49, 135-143 Google Scholar

[15]

Beyer H., Kempfle S., Definition of physically consistent damping laws with fractional derivatives, ZAMM-Z. Angew Math. Mech., 1995, 75, 623-635 CrossrefGoogle Scholar

[16]

Mainardi F., Fractional relaxation-oscillation and fractional diffusion-wave phenomena, Chaos Solitons Fractals, 1996, 7, 1461-1477 CrossrefGoogle Scholar

[17]

Gorenflo R., Mainardi F., Fractional calculus: integral and differential equations of fractional order, In: Carpinteri A., Mainardi F. (Eds.), Fractals and fractional calculus in continuum mechanics, Springer-Verlag, Wien/New York, 1997, 223-276 Google Scholar

[18]

Achar B.N.N., Hanneken J.W., Clarke T., Response characteristics of a fractional oscillator, Phys. A, 2002, 309, 275-288 CrossrefGoogle Scholar

[19]

Lim S.C., Li M., Teo L.P., Locally self-similar fractional oscillator processess, Fluct. Noise Lett., 2007, 7, L169-L179 CrossrefGoogle Scholar

[20]

Lim S.C., Teo L.P., The fractional oscillator process with two indices, J. Phys. A: Math. Theor., 2009, 42, 065208 CrossrefGoogle Scholar

[21]

Li M., Lim S.C., Chen S., Exact solution of impulse response to a class of fractional oscillators and its stability, Math. Probl. Eng., 2011, 2011, 657839 Web of ScienceGoogle Scholar

[22]

Shen Y.J., Yang S.P., Xing H.J., Dynamical analysis of linear single degree-of-freedom oscillator with fractional-order derivative, Acta Phys. Sin., 2012, 61, 110505-1-6 Google Scholar

[23]

Shen Y., Yang S., Xing H., Gao G., Primary resonance of Duffing oscillator with fractional-order derivative, Commun. Nonlinear Sci. Numer. Simulat., 2012, 17, 3092-3100 CrossrefGoogle Scholar

[24]

Huang C., Duan J.S., Steady-state response to periodic excitation in fractional vibration system, J. Mech., 2016, 32, 25-33 CrossrefWeb of ScienceGoogle Scholar

[25]

Duan J.S., Huang C., Liu L.L., Response of a fractional nonlinear system to harmonic excitation by the averaging method, Open Phys., 2015, 13, 177-182 Web of ScienceGoogle Scholar

[26]

Li C.P., Deng W.H., Xu D., Chaos synchronization of the Chua system with a fractional order, Phys. A, 2006, 360, 171-185 CrossrefGoogle Scholar

[27]

Zhang W., Liao S.K., Shimizu N., Dynamic behaviors of nonlinear fractional-order differential oscillator, J. Mech. Sci. Tech., 2009, 23, 1058-1064 CrossrefGoogle Scholar

[28]

Wang Z.H., Hu H.Y., Stability of a linear oscillator with damping force of the fractional-order derivative, Sci. China Ser. G, 2010, 53, 345-352 CrossrefGoogle Scholar

[29]

Huang L.L., Wu G.C., Rashidi M.M., Luo W.H., Chaos analysis of the nonlinear duffing oscillators based on the new Adomian polynomials, J. Nonlinear Sci. Appl., 2016, 9, 1877-1881 CrossrefGoogle Scholar

[30]

Wu G.C., Baleanu D., Xie H.P., Chen F.L., Chaos synchronization of fractional chaotic maps based on the stability condition, Physica A, 2016, 460, 374-383 Web of ScienceCrossrefGoogle Scholar

[31]

Li C., Ma Y., Fractional dynamical system and its linearization theorem, Nonlinear Dynam., 2013, 71, 621-633 Web of ScienceCrossrefGoogle Scholar

[32]

Băleanu D., Mustafa O.G., Agarwal R.P., An existence result for a superlinear fractional differential equation, Appl. Math. Lett., 2010, 23, 1129-1132 Web of ScienceCrossrefGoogle Scholar

[33]

Băleanu D., Mustafa O.G., On the global existence of solutions to a class of fractional differential equations, Comput. Math. Appl., 2010, 59, 1835-1841 Web of ScienceCrossrefGoogle Scholar

[34]

Kumar D., Singh J., Baleanu D., A new analysis for fractional model of regularized long-wave equation arising in ion acoustic plasma waves, Math. Methods Appl. Sci., 2017, 40, 5642-5653 Web of ScienceCrossrefGoogle Scholar

[35]

Yaseen M., Abbas M., Nazir T., Baleanu D., A finite difference scheme based on cubic trigonometric B-splines for a time fractional diffusion-wave equation, Adv. Difference Equ., 2017, 2017, 274 Web of ScienceCrossrefGoogle Scholar

[36]

Zeng S., Baleanu D., Bai Y., Wu G., Fractional differential equations of Caputo-Katugampola type and numerical solutions, Appl. Math. Comput., 2017, 315, 549-554 Web of ScienceGoogle Scholar

[37]

Kaslik E., Sivasundaram S., Non-existence of periodic solutions in fractional-order dynamical systems and a remarkable difference between integer and fractional-order derivatives of periodic functions, Nonlinear Anal. Real World Appl., 2012, 13, 1489-1497 CrossrefWeb of ScienceGoogle Scholar

[38]

Duan J.S., Wang Z., Liu Y.L., Qiu X., Eigenvalue problems for fractional ordinary differential equations, Chaos Solitons Fractals, 2013, 46, 46-53 Web of ScienceCrossrefGoogle Scholar

[39]

Agarwal R.P., Andrade B.D., Cuevas C., Weighted pseudo-almost periodic solutions of a class of semilinear fractional differential equations, Nonlinear Anal. Real World Appl., 2010, 11, 3532-3554 CrossrefWeb of ScienceGoogle Scholar

[40]

Liu L.L., Duan J.S., A detailed analysis for the fundamental solution of fractional vibration equation, Open Math., 2015, 13, 826-838 Web of ScienceGoogle Scholar

[41]

Caputo M., Mean fractional-order-derivatives differential equations and filters, Annali dell’Università di Ferrara, 1995, 41, 73-84 Google Scholar

[42]

Caputo M., Distributed order differential equations modelling dielectric induction and diffusion, Frac. Calc. Appl. Anal., 2001, 4, 421-442 Google Scholar

[43]

Bagley R.L., Torvik P.J., On the existence of the order domain and the solution of distributed order equations – Part I, Int. J. Appl. Math., 2000, 2, 865-882 Google Scholar

[44]

Bagley R.L., Torvik P.J., On the existence of the order domain and the solution of distributed order equations – Part II, Int. J. Appl. Math., 2000, 2, 965-987 Google Scholar

[45]

Atanackovic T.M., A generalized model for the uniaxial isothermal deformation of a viscoelastic body, Acta Mechanica, 2002, 159, 77-86 CrossrefGoogle Scholar

[46]

Atanackovic T.M., On a distributed derivative model of a viscoelastic body, C. R. Mecanique, 2003, 331, 687-692 CrossrefGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.