Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Physics

formerly Central European Journal of Physics

Editor-in-Chief: Seidel, Sally

Managing Editor: Lesna-Szreter, Paulina


IMPACT FACTOR 2018: 1.005

CiteScore 2018: 1.01

SCImago Journal Rank (SJR) 2018: 0.237
Source Normalized Impact per Paper (SNIP) 2018: 0.541

ICV 2017: 162.45

Open Access
Online
ISSN
2391-5471
See all formats and pricing
More options …
Volume 15, Issue 1

Issues

Volume 13 (2015)

Electromagnetic phenomena analysis in brushless DC motor with speed control using PWM method

Marek Pawel Ciurys
  • Corresponding author
  • Department of Electrical Machines, Drives and Measurements, Faculty of Electrical Engineering, Wroclaw University of Science and Technology, Wroclaw, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-12-29 | DOI: https://doi.org/10.1515/phys-2017-0109

Abstract

Field-circuit model of a brushless DC motor with speed control using PWM method was developed. Waveforms of electrical and mechanical quantities of the designed motor with a high pressure vane pump built in a rotor of the motor were computed. Analysis of electromagnetic phenomena in the system: single phase AC network – converter - BLDC motor was carried out.

Keywords: electrical machines; brushless DC motor; electromagnetic phenomena; PWM speed control

PACS: 84.50.+d; 41.20.-q

1 Introduction

Brushless DC motors are known for their high performance and reliability, as well as their high torque and high power per volume unit [1, 2], that is why they are widely used in the automotive industry, industrial automation, computer drives, medical and military technology as well as in special purpose devices [1, 2, 3, 4, 5, 6, 7, 8]. Rotational speed of BLDC motors is proportional to power supply voltage, therefore it can be regulated by pulse width modulation (PWM) using an inverter [1, 2, 9, 10, 11]. Such operation results in phase currents pulsations and pulsations in torque with a frequency range of up to several dozen kHz. It can be particularly unfavorable for low inductance machines [6, 12]. Magnetic flux density pulsations in an air gap caused by stator slotting and motor phase currents pulsations resulting from commutation and inverter PWM operation, are responsible for power losses in permanent magnets and the rotor iron [13, 14]. Phase currents pulsations lead to the increase in power losses in the stator iron and in the winding. Currents changes result in a different magnetic flux density distribution within the magnetic circuit of the machine. It affects the change in power losses in the motor and the change of the winding inductance; and therefore it has an impact on the instantaneous values of electrical quantities in the drive system. In the available literature these phenomena are not sufficiently presented. Only field-circuit modelling using the finite element method can show a correlation between phenomena appearing in the magnetic circuit and electrical circuit of the motor along with the power converter.

This paper presents the field–circuit analysis of electromagnetic phenomena in a drive system with a new design solution of PM BLDC motor which speed is controlled using PWM method. The essence of the solution is presented in Figure 1. The magnetic circuit of the motor consists of a stator with a three-phase winding, and a rotor with neodymium magnets on its surface. Inside of the rotor there is a built-in inverted action high pressure vane pump. To prevent the pump from the incoming magnetic flux, a nonmagnetic sleeve was used between the rotating part of the pump and the yoke of the rotor.

The stator of the motor is a part of the body of the integrated motor-pump device. The pump external casing rotates along with the rotor of the electric motor. The internal part of the pump (with the vanes) is immovable [3, 8, 11]. The flow of the vane pump is controlled through the change in rotational speed of the motor by the PWM method.

Cross-section of the designed PM BLDC motor with the vane pump built in the rotor: 1 – stator sheet, 2 – winding, 3 – permanent magnet,4 – rotor yoke, 5 – non-magnetic sleeve, 6 – rotating part of the vane pump
Figure 1

Cross-section of the designed PM BLDC motor with the vane pump built in the rotor: 1 – stator sheet, 2 – winding, 3 – permanent magnet,4 – rotor yoke, 5 – non-magnetic sleeve, 6 – rotating part of the vane pump

The BLDC motor power is P = 2,5 kW at maximum speed nmax = 3000 rpm. The motor is supplied (Figure 2) from the single-phase 230 VAC, 50 Hz network through the converter that consists of a rectifier, a smoothing capacitor and an inverter. The construction of the motor was shown in detail in [8] Both the motor and the converter were designed and built at the Department of Electrical Machines, Drives and Measurements at the Wroclaw University of Science and Technology [11].

Electric circuit diagram of the system: single-phase AC network – converter (rectifier – capacitor – inverter) – brushless DC motor
Figure 2

Electric circuit diagram of the system: single-phase AC network – converter (rectifier – capacitor – inverter) – brushless DC motor

2 Field – circuit model

In order to analyze electromagnetic phenomena in the motor, it was necessary to develop a field-circuit model of the whole analyzed electromechanical system, i.e. the electric circuit (Figure 2), the motor magnetic circuit (Figure 3), and the waveform of the load torque generated by the vane pump. The model was developed using the ANSYS software.

Magnetic flux density module distribution
Figure 3

Magnetic flux density module distribution

The following factors were included, among others [3, 15]:

  • geometrical dimensions of the machine magnetic circuit,

  • axial direction of the magnets magnetization,

  • magnetization characteristics and conductivity of the stator sheet and rotor yoke,

  • demagnetization characteristics and conductivity of permanent magnets,

  • eddy currents and hysteresis power losses in the stator and in the rotor,

  • source voltage waveform (u1) and parameters of the power supply network (R1, L1),

  • parameters of the converter (rectifier, smoothing capacitor, inverter),

  • resistance and inductance of the winding,

  • commutation of the winding phases,

  • the unipolar H_PWM_L_ON [10] speed control method,

  • limiting instantaneous values of motor phase currents to the level which does not lead to demagnetization of the magnets,

  • the load torque waveform generated by the vane pump experimentally determined.

The field-circuit model is described in details in Ref. [3].

3 Results of computations of the waveforms of electrical and mechanical quantities

Using the developed field-circuit model, magnetic field analysis of the motor was performed and waveforms of the electrical and mechanical quantities in the drive system were determined. The results shown in the Figures 3-14 refer to the rated torque of the motor.

4 Analysis of the electromagnetic phenomena in the system: single-phase AC network – converter – PM BLDC motor

The magnetic circuit computations of the integrated motor-pump device showed correct magnetic flux density values of its particular elements (Figure 3). The magnetic induction value at the rated motor torque does not exceed 1.6 T, and 2.0 T during overloading. This means that the magnetic circuit is used, but not oversaturated. The magnetic induction module value of the external (rotating) element of the pump reaches a few mT only. This means that the used non-magnetic sleeve successfully protects the inside of the pump from the magnetic flux generated by the magnets.

The converter input voltage waveform is a distorted sine wave. This is a result of source voltage deformation, and voltage drops in the single-phase AC network (Figure 4). The converter input current is drawn from the network during a time interval, when the instantaneous value of the converter input voltage is higher than the one of the capacitor (Figure 4). The converter input current charges the capacitor which smoothens the input voltage of the inverter.

Waveforms of: source voltage of the single-phase network (IUs), converter input voltage (IUp), converter input current (Vis) and inverter input voltage (IUkond)
Figure 4

Waveforms of: source voltage of the single-phase network (IUs), converter input voltage (IUp), converter input current (Vis) and inverter input voltage (IUkond)

As a result of the rectifier operation, the capacitor voltage (the input voltage of the inverter) has a ripple waveform with the frequency of 100 Hz. These ripples and pulsations result from converter input voltage deformations are transferred to the waveforms of: phase voltages and currents of the motor, inverter input current, and the motor torque (Figures 6-8, 10).

Waveform of the capacitor current (Figure 5) has two components: rectified current drawn from the single-phase AC network which charges the capacitor, and the inverter input current (Figure 6) which discharges it. The inverter input current waveform is a result of the load torque and rotational speed, commutation of the motor winding phases, the PWM operation of the inverter and the voltage ripples at its input.

Waveform of charging and discharging current of the capacitor
Figure 5

Waveform of charging and discharging current of the capacitor

Waveform of inverter input current
Figure 6

Waveform of inverter input current

In the waveforms of phase currents (Figure 7), the greatest part is played by ripples caused by winding phases commutation process and ripples caused by PWM operation of the inverter. Ripples, with the frequency of 100Hz, resulting from the rectifier operation are smaller.

Waveforms of motor phase currents
Figure 7

Waveforms of motor phase currents

Using the unipolar H_PWM_L_ON method of rotational speed control, the upper group of inverter transistors are switched on/off with the PWM frequency of 15625 Hz. When one of them is switched off (e.g. the transistor Q1 while supplying phases ‘a’ and ‘b’ – Figure 1) the current decreases in the circuit: one of the winding phase (phase ‘a’) – second of the winding phase (phase ‘b’) – a transistor of the inverter lower group of the second winding phase (transistor Q4) – a flyback diode of the first winding phase (diode D2) – first of the winding phase (phase ‘a’). This circuit is marked in red in Figure 2.

In some time periods e.g. from approximately 292,9 ms to around 294 ms - Figure 7) there is a current flow in the “non-powered” phase ‘c’ when the upper group of inverter transistors are switched off due to the PWM system operation. The electric circuit diagram presenting this phenomenon (current flow in the “non –powered” phase ‘c’) is shown in Figure 15. The current in the phase ‘c’ begins to flow when the inverter diode D6 becomes conductive. It can happen when the transistor Q1 is switched off (which is caused by the PWM system operation) and the instantaneous value of the induced electromotive force ec is negative (with direction towards node ‘W’ in the electric circuit -Figure 15). Because of the fact that the ‘upper’ group transistors (Q1, Q3, Q5) of the inverter are switched off, electrical energy is not transferred to the motor. Magnetic energy accumulated in the winding phases ‘a’ and ‘b’ maintains the direction of currents flow ia and ib discharging itself within the circuit: phase ‘b’– transistor Q4 – flyback diode D2 – phase ‘a’ and the parallel circuit with the flyback diode D6 and phase ‘c’ (the circuits marked in red in Figure 15).

The current flow in the phase ‘c’ of the winding leads to a faster discharging of energy accumulated in phase ‘a’, so it decreases the instantaneous value of the current flowing in phase ‘a’. For this reason the current pulsations of the phase ‘a’, which are the result of the PWM system operation, are higher than in the phase ‘b’. The difference becomes higher with the growth of the instantaneous value of the phase ‘c’ current.

Waveforms of the phase voltages are not symmetrical to the time axis (Figure 8). This is a result of changes in the steepness in increase and decrease of currents during the current flow in the “non-powered” winding phase.

Waveforms of motor phase voltages
Figure 8

Waveforms of motor phase voltages

During the winding phases commutation process there are considerable changes of the instantaneous values of the phase voltages. These changes are caused by the changes in the steepness in the decrease and increase of phase currents, and by resulting from this the changes of the self-induced emfs.

Waveforms of flux linkage with the winding phases (Figure 9) are distorted sine waves. In these waveforms the deformations during winding phases commutation process, and to a much lesser degree ripples which results from phase currents ripples with PWM frequency can be noticed.

Waveforms of magnetic flux linkage with the motor winding phases ‘a’, ‘b’ and ‘c’
Figure 9

Waveforms of magnetic flux linkage with the motor winding phases ‘a’, ‘b’ and ‘c’

In waveform of the motor torque, the greatest part is played by both: the ripples resulting from the winding phases commutation, and the pulsations caused by the inverter PWM operation (Figure 10). These pulsations are much higher than the load torque pulsations generated by the vane pump. Despite high amplitude of the torque pulsations, rotational speed pulsations (Figure 11) do not exceed 1.3%.

Waveforms of PM BLDC motor torque and load torque generated by the vane pump
Figure 10

Waveforms of PM BLDC motor torque and load torque generated by the vane pump

Waveform of rotational speed
Figure 11

Waveform of rotational speed

In the waveforms of power losses in the stator iron, rotor and the winding, there are pulsations caused by the operation of the rectifier, as well as commutation of the motor winding phases and the inverter PWM operation (Figure 12-14). The main reason for power losses in the stator iron, in both eddy currents and hysteresis, lies in the magnetic flux pulsations with the PWM frequency (Figure 12). Power losses in the rotor also depends heavily upon the magnetic flux pulsations with the PWM frequency. The instantaneous values of power losses in the rotor during the commutation of the winding phases are higher than their average value (Figure 13). Waveforms computations of the electrical and mechanical quantities in the system: single phase AC network – converter – PM BLDC motor – vane pump enabled operating parameters of the designed drive system to be determined, including motor efficiency and converter efficiency. These efficiencies reached 87.1% and 97.3% respectively at the rated motor torque. The results of computations were verified and confirmed by experimental analyses. The differences between average values of computations and measurements do not exceed a few percent.

Waveform of power losses in the stator iron
Figure 12

Waveform of power losses in the stator iron

Waveform of the summary power losses in the magnets and rotor yoke
Figure 13

Waveform of the summary power losses in the magnets and rotor yoke

Waveform of power losses in the winding
Figure 14

Waveform of power losses in the winding

Ilustration of the current flow in the phase ‘c’ when it is “non-powered”
Figure 15

Ilustration of the current flow in the phase ‘c’ when it is “non-powered”

5 Conclusions

Due to the developed field-circuit model it was possible to determine the waveforms of electrical and mechanical quantities in the drive system with BLDC motor and PWM speed control.

The determined waveforms take into account interactions between electromagnetic and electromechanical phenomena in the: single phase AC network – converter – BLDC motor system. The analysis of electromagnetic phenomena in the drive system showed their complexity and that it is necessary to consider their mutual interactions. Computations of electrical and mechanical quantities waveforms at different values of the load torque allow the electromechanical characteristics and drive system performance to be determined. The developed drive system with the developed BLDC motor reached a high performance of 84.7%.

Acknowledgement

Computations were made using resources of the Wroclaw Centre for Networking and Supercomputing (http://wcss.pl). Grant No. 400.

References

  • [1]

    Gieras J.F., Wing M., Permanent magnet motor technology, Marcel Dekker, Inc. New York, Basel, 2002. Google Scholar

  • [2]

    Hendershot J.R, Miller T.J.E., Design of brushless permanent-magnet motors, Magna Physics Publishing and Calderon Press, Oxford, 1994. Google Scholar

  • [3]

    Ciurys M. P., Time-stepping finite element analysis of a brushless DC motor with the PWM speed control, IEEE Conference Publications, 2017 International Symposium on Electrical Machines (SME), Naleczow, Poland 18-21 June 2017, . CrossrefGoogle Scholar

  • [4]

    Antaki J., Paden B. E., Piovoso M. J., Banda S. S., Award-winning control applications, IEEE Control System Magazine, 2002, 12, 8-20. Google Scholar

  • [5]

    Yang F., Jiang C., Taylor A., Bai H., Kotrba A., Yetkin A., Gundogan A., Design of a High-Efficiency Minimum-Torque-Ripple 12-V/1-kW Three-Phase BLDC Motor Drive System for Diesel Engine Emission Reductions, IEEE Transactions on Vehicular Technology, 2014, 63, 7, 3107-3115. Web of ScienceGoogle Scholar

  • [6]

    Li H., Li W., Ren H., Fault-Tolerant Inverter for High-Speed Low-Inductance BLDC Drives in Aerospace Applications, IEEE Transactions on Power Electronics, 2017, 32, 3, 2452-2463. Web of ScienceGoogle Scholar

  • [7]

    Piccigallo M., Scarfogliero U., Quaglia C., Petroni G., Valdastri P., Menciassi A., Dario P., Design of a Novel Bimanual Robotic for Single-Port Laparoscopy, System for Mechatronics, IEEE/ASME Transactions on Mechatronics, 2010, 15, 6, 871-878. Google Scholar

  • [8]

    Ciurys M. P., Dudzikowski I., Analysis of a brushless dc motor integrated with a high-pressure vane pump, Technical Transactions Electrical Engineering, 2015, 1-E, 407-416. Google Scholar

  • [9]

    Cui Ch., Liu G., Wang K., A Novel Drive Method for High-Speed Brushless DC Motor Operating in a Wide Range, IEEE Transactions on Power Electronics, 2015, 30, 9, 4998-5008. CrossrefWeb of ScienceGoogle Scholar

  • [10]

    Li Q., Huang H., Yin B., The study of PWM methods in permanent magnet brushless DC motor speed control system, ICEMS International Conference on Electrical Machines and Systems, 2008. Google Scholar

  • [11]

    Ciurys M. P., Dudzikowski I., Pawlak M., Laboratory tests of a PM-BLDC motor drive, IEEE Conference Publications, Selected Problems of Electrical Engineering and Electronics (WZEE), Kielce, Poland 17-19 Sept. 2015, . CrossrefGoogle Scholar

  • [12]

    Fang J., Zhou X., Liu G., Instantaneous torque control of small inductance brushless DC motor, IEEE Trans. Power Electron., 2012, 27, 12, 4952-4964. Web of ScienceGoogle Scholar

  • [13]

    Mijavec D., Zidari B., Eddy current losses in permanent magnets of the BLDC machine, COMPEL – the international journal for computation and mathematics in electrical and electroic enginneering, 2007, 26, 4, 1095-1104. CrossrefGoogle Scholar

  • [14]

    Ishak D., Zhu Z. Q., Howe D., Eddy-current loss in the rotor magnets of permanent-magnet brushless machines having a fractional of slots per pole, IEEE Transactions on Magnetics, 2005, 41, 9, 2462-2469. CrossrefGoogle Scholar

  • [15]

    Ciurys M. P., Brushless DC motor with a vane pump built in and with speed control using PWM method, IEEE Conference Publications, 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering (ISEF) Book of Abstracts, Lodz, Poland, 14-16 Sept. 2017, . CrossrefGoogle Scholar

About the article

Received: 2017-11-01

Accepted: 2017-11-12

Published Online: 2017-12-29


Citation Information: Open Physics, Volume 15, Issue 1, Pages 907–912, ISSN (Online) 2391-5471, DOI: https://doi.org/10.1515/phys-2017-0109.

Export Citation

© 2017 M. P. Ciurys. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in