[1]

Merton R.C., Optimum consumption and portfolio rules in a continuous time model, J. Economic Theory, 1971, 3, 373-413. CrossrefGoogle Scholar

[2]

Cox J.C., The constant elasticity of variance option pricing model, J. Portfolio Manage., 1996, 22, 16-17. Google Scholar

[3]

Cox J.C, Ross S.A., The valuation of options for alternative stochastic processes, J. Financial Economics, 1976, 3, 145-166. CrossrefGoogle Scholar

[4]

Schroder M., Computing the constant elasticity of variance option pricing formula, J. Finan., 1989, 44, 211-219. CrossrefGoogle Scholar

[5]

Beckers S., The constant elasticity of variance model and its implications for option pricing, J. Finan., 1980, 35, 661-673. CrossrefGoogle Scholar

[6]

Davydov D., Linetsky V., The valuation and hedging of barrier and lookback option under the CEV process, Management Sci., 2001, 47, 949-965. CrossrefGoogle Scholar

[7]

Emanuel D., Macbeth J., Further results on the constant elasticity of variance call option pricing model, J. Financial Quan. Anal., 1982, 17, 53-54. Google Scholar

[8]

Hsu Y.L., Lin T.I., Lee C.F., Constant elasticity of variance (CEV) option pricing model: Integration and detailed derivation, Math. Comput. Simul., 2008, 79, 60-71. CrossrefGoogle Scholar

[9]

Chang H., Rong X.M., Zhao H., Zhang C.B., Optimal investment and consumption decisions under the constant elasticity of variance model, Math. Prob. Eng., 2013, 974098 Google Scholar

[10]

Xiao J., Zhai H., Qin C., The constant elasticity of variance (CEV) model and the Legendre transform-dual solution for annuity contracts, Insurance: Mathematics and Eco., 2007, 40, 302 - 310. Google Scholar

[11]

Gao J., An extended CEV model and the Legendre transform-dual-asymptotic solutions for annuity contracts, Insurance: Mathematics and Eco., 2010, 46, 511-530. Google Scholar

[12]

Lo C.F., Yuen P.H., Hui C.H., Constant elasticity of variance option pricing model with time-dependent parameters, Int. J. Theor. Appl. Fin., 2000, 3, 661-674. CrossrefGoogle Scholar

[13]

Ballestra L.V., Cecere L., Pricing American options under the constant elasticity of variance model: An extension of the method by Barone-Adesi and Whaley, Finance Research Lett., 2015, 14, 45-55. CrossrefGoogle Scholar

[14]

Ballestra L.V., Pacelli G., The constant elasticity of variance model: calibration, test and evidence from the Italian equity market, Appl. Financial Eco., 2011, 21, 1479-1487. CrossrefGoogle Scholar

[15]

Rong X., Zhao H., Time-consistent reinsurance-investment strategy for an insurer and a reinsurer with mean-variance criterion under the CEV model, J. Comput. Appl. Math., 2015, 283, 142-162. CrossrefGoogle Scholar

[16]

Tsai Wei-Che, Improved method for static replication under the CEV model, Finance Research Lett., 2014, 11, 194-202. CrossrefGoogle Scholar

[17]

Zhao H., Rong X., On the constant elasticity of variance model for the utility maximization problem with multiple risky assets, IMA J. Management Math., 2017, 28, 299-320. CrossrefGoogle Scholar

[18]

Ovsiannikov L.V., Group Analysis of Differential Equations, Academic Press, New York, 1982. Google Scholar

[19]

Olver P.J., Applications of Lie Groups to Differential Equations, Springer, New York, 1986. Google Scholar

[20]

Bluman G.W., Kumei S., Symmetries and Differential Equations, Springer, New York,1989. Google Scholar

[21]

Ibragimov N.H., Elementary Lie Group Analysis and Ordinary Differential Equations, John Wiley & Sons, Chichester, 1999. Google Scholar

[22]

Motsepa T., Khalique C.M., Conservation laws and solutions of a generalized coupled (2+1)-dimensional burgers system, Comput. Math. Appl., 2017, 74, 1333-1339. CrossrefGoogle Scholar

[23]

Ma P.L., Tian S.F., Zhang T.T., On symmetry-preserving difference scheme to a generalized Benjamin equation and third order Burgers equation, Appl. Math. Lett., 2015, 50, 146-152. CrossrefGoogle Scholar

[24]

Tu J.M., Tian S.F., Xu M.J., Zhang T.T., On Lie symmetries, optimal systems and explicit solutions to the Kudryashov-Sinelshchikov equation, Appl. Math. Comp., 2016, 275, 345-352 CrossrefGoogle Scholar

[25]

Gazizov R.K., Ibragimov N.H., Lie symmetry analysis of differential equations in finance, Nonlinear Dynam., 1998, 17, 387-407. CrossrefGoogle Scholar

[26]

Goard J., New solutions to the bond pricing equation via Lie’s classical method, Math. Comput. Model., 2000, 32, 299-313. CrossrefGoogle Scholar

[27]

Goard J., P. Broadbridge and G. Raina, Tractable forms of the bond pricing equation, Math. Comput. Model., 2004, 40, 151-172. CrossrefGoogle Scholar

[28]

Sinkala W., Leach P.G.L., O’Hara J.G., Zero-coupon bond prices in the Vasicek and CIR models: Their computation as group invariant solutions, Math. Meth. Appl. Sci., 2008, 31, 665-678. CrossrefGoogle Scholar

[29]

Sinkala W., Leach P.G.L., O’Hara J.G., Invariance properties of a general bond-pricing equation, J. Differential Equ., 2008, 244, 2820-2835. CrossrefGoogle Scholar

[30]

Sinkala W., Leach P.G.L., O’Hara J.G., An optimal system and group-invariant solutions of the Cox-Ingersoll-Ross pricing equation, Appl. Math. Comput., 2008, 201, 95-107. Google Scholar

[31]

Sinkala W., Leach P.G.L., O’Hara J.G., Embedding the Vasicek model into the Cox-Ingersoll-Ross model, Math. Meth. Appl. Sci., 2001, 34, 152-159. Google Scholar

[32]

Motsepa T., Khalique C.M., Molati M., Group classification of a general bond-option pricing equation of mathematical finance, Abstract Appl. Anal. Volume 2014, Article ID 709871, 10 pages. Google Scholar

[33]

Lekalakala S.L., Motsepa T., Khalique C.M., Lie Symmetry Reductions and Exact Solutions of an Option-Pricing Equation for Large Agents, Mediterr. J. Math., 2016, 13, . CrossrefGoogle Scholar

[34]

Nteumagne B.F., Moitsheki R.J., Optimal systems and group in variant solutions for a model arising in financial mathematics, Math. Model. Anal., 2009, 14, 495-502. CrossrefGoogle Scholar

[35]

Bozhkov Y., Dimas S., Group classification of a generalization of the Heath equation, Appl.Math. Comput., 2014, 243, 121-131. Google Scholar

[36]

Caister N.C., Govinder K.S., O’Hara J.G., Solving a nonlinear pde that prices real options using utility based pricing methods, Nonlinear Anal.: Real World Appl., 2011, 12, 2408-2415. CrossrefGoogle Scholar

[37]

Caister N.C., Govinder K.S., O’Hara J.G., Optimal system of Lie group invariant solutions for the Asian option PDE, Math. Meth. Appl. Sci., 2011, 34, 1353-1365. CrossrefGoogle Scholar

[38]

Naicker V., O’Hara J.G., Leach P.G.L., A note on the integrability of the classical portfolio selection model, Appl. Math. Lett., 2010, 23, 1114-1119. Google Scholar

[39]

Lo C.F., Lie algebraic approach for pricing zero-coupon bonds in single-factor interest rate models, J. Appl. Math., Volume(2013), Article ID 276238, 9 pages. Google Scholar

[40]

Taylor S.M., Glasgow S.A., A novel reduction of the simple Asian option and Lie-group invariant solutions, Int. J. Theoret. Appl. Fin., 2009, 12, 1197. CrossrefGoogle Scholar

[41]

Wang Z., Wang L., Wang D.S., Jin Y., Optimal system, symmetry reductions and new closed form solutions for the geomet- ric average Asian options. Appl. Math. Comput., 2014, 226, 598-605. Google Scholar

[42]

Pooe C.A., Mahomed F.M., Wafo-Soh C., Fundamental solutions for zero-coupon bond pricing models, Nonlinear Dyn., 2004, 36, 69-76. CrossrefGoogle Scholar

[43]

Ibragimov N.H., A new conservation theorem, J. Math. Anal. Appl., 2007, 333, 311-328. CrossrefGoogle Scholar

[44]

Ablowitz M.J., Clarkson P.A., Solitons; Nonlinear Evolution Equations and Inverse Scattering, Cambridge Univ. Press, 1991. Google Scholar

[45]

Xu M.J., Tian S.F., Tu J.M., Zhang T.T., Bäcklund transformation, infinite conservation laws and periodic wave solutions to a generalized (2+1)-dimensional Boussinesq equation, Nonlinear Analysis: Real World Appl,.2016, 31, 388-408. CrossrefGoogle Scholar

[46]

Hirota R., Direct Methods in Soliton Theory, Springer, 2004. Google Scholar

[47]

Weiss J., Tabor M., Carnevale G., The Painlevé property for partial differential equations, J. Math. Phys., 1983, 24, 522-526. CrossrefGoogle Scholar

[48]

Tu J.M., Tian S.F., Xu M.J., Ma P.L., Zhang T.T., On periodic wave solutions with asymptotic behaviors to a (3+1)-dimensional generalized B-type Kadomtsev-Petviashvili equation in fluid dynamics, Comput. Math App., 2016, 72, 2486-2504. Google Scholar

[49]

Wang X.B., Tian S.F., Qin C.Y., Zhang T.T., Dynamics of the breathers, rogue waves and solitary waves in the (2+1)- dimensional Ito equation, Appl. Math. Lett., 2017, 68, 40-47. CrossrefGoogle Scholar

[50]

Wolfram Research, Inc., Mathematica, Version 10.0, Champaign, IL (2014). Google Scholar

[51]

Abramowitz M., Stegun I.A., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, 1972, 260 Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.