[1]

Pham D.A.K., Pham T.M.T., Gockenbach E., Borsi H., Application of a new method in detecting a mechanical failure associated with series capacitance change in a power transformer winding, IEEE International Conference on Liquid Dielectrics, (June 30 - July 3, 2014, Bled, Slovenia), Bled, 2014, 1-4. Google Scholar

[2]

Secue J.R., Mombello E., Sweep frequency response analysis (SFRA) for the assessment of winding displacements and deformation in power transformers, Electric Power Systems Research, 2008, 78, 1119-1128. Web of ScienceCrossrefGoogle Scholar

[3]

Bagheri S., Efftnejad R., Salami A., Transformer Winding Parameter Identification based on Frequency Response Analysis using Hybrid Wavelet Transform (WT) and Simulated Annealing Algorithm (SA) and Compare with Genetic Algorithm (GA), Indian Journal of Science and Technology, 2014, 7, 614-621. Google Scholar

[4]

Abu-Siada A., Frequency response analysis using high frequency transformer model, Elixir Elec. Eng., 2011, 41, 5827-5831. Google Scholar

[5]

Hossein S.M.H., Adineh H.R., Saeedi M., Improved Modeling of Power Transformer Winding Using PSO, International Journal of Engineering and Innovative Technology, 2013, 3, 455-459. Google Scholar

[6]

ArulSathya M., Usa S., Prediction of Changein Equivalent Circuit Parameters of Transformer Winding Due to Axial Deformation using Sweep Frequency Response Analysis, Journal of Electronic Engineering and Technology, 2015, 10, 983-989. CrossrefGoogle Scholar

[7]

Islam S.M., Coates K.M., Ledwich G., Identification of high frequency transformer equivalent circuit using Matlab from frequency domain data, Industry Applications Conference, Thirty- Second IAS Annual Meeting, IAS ’97, (5-9 Oct, 1997, New Orleans, USA), 1997, 357-364. Google Scholar

[8]

Satish L., Sahoo S.K., Locating faults in a transformer winding: An experimental study, Electric Power System Research, 2009, 79, 89-97. CrossrefGoogle Scholar

[9]

Chaouche M.S., Houassine H., Moulahoum S., Colak I., Finite element method to construct a lumped parameter ladder network of the transformer winding, Renewable Energy Research and Applications (ICRERA), 2017 IEEE 6th International Conference, (5-8 Nov, 2017, San Diego, USA), San Diego, 1092-1096. Google Scholar

[10]

Shintemirov A., Tang W.H., Wu Q. H., Transformer winding condition assessment using frequency response analysis and evidential reasoning, IET Electric Power Applications, 2010, 4, 198-212. Web of ScienceCrossrefGoogle Scholar

[11]

Ragavan K., Satish L., Localization of Changes in a Model Winding Based on Terminal Measurements: Experimental Study. IEEE Transactions on Power Delivery, 2007, 22, 1557-1565. CrossrefWeb of ScienceGoogle Scholar

[12]

Islam A., Khan S.I., Hoque A., Detection of Mechanical Deformation in Old Aged Power Transformer Using Cross Correlation Coefficient Analysis Method, Energy and Power Engineering, 2011 3, 585-591. CrossrefGoogle Scholar

[13]

Karimifar P., Gharehpetian G. B., A new algorithm for localization of radial deformation and determination of deformation ex tent in transformer windings, Electric Power Systems Research, 2008, 78, 1701-1711. CrossrefGoogle Scholar

[14]

Chaouche M.S., Houassine H., Moulahoum S., Colak I., Faults Investigation of Transformer Windings Using the Frequency Response Analysis FRA. 15th IEEE International Conference on Machine Learning and Applications, (18-20 Dec, 2016, Anaheim, USA), Anaheim, 452-459. Google Scholar

[15]

Chaouche M.S., Moulahoum S., Houassine H., Three phase transformer modelling by frequency response analysis measurement, 18th IEEE International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering (ISEF) Book of Abstracts, (14-16 Sept, 2017, Lodz, Poland), Lodz, 1-3. Google Scholar

[16]

Herrera W., Aponte G., Pleite J., Gonzalez G.C., A novel methodology for transformer low-frequency model parameters identification, Electrical Power end Energy System, 2013, 53, 643- 648. CrossrefGoogle Scholar

[17]

Guimarăes R.C., Modelo Elétrico da Impedância do Transformador Baseado em Células RLC Passivas, Dissertaçăo de mestrado (Engenharia tese), 2010, Porto Alegre University. Google Scholar

[18]

Villacián C.C., Aportaciones al modelado del transformador en alta frecuencia, (PhD thesis), 2012, Cantabria University. Google Scholar

[19]

Gonzalez G.C., Procedimiento de Modelado basado en el Análisis de la Respuesta en Frecuencia y aplicación en Transformadores Trifásicos de Potencia para su Caracterización y Diagnóstico, (PhD thesis), 2012, Leganés University. Google Scholar

[20]

Aponte G., Cadavid H., Martinez J., Castańo J., Herrera W., Evaluación de la Respuesta en Frecuencia del Transformador utilizando un modelo Circuital de Celdas. Revista Energía y Computación, 2010, 18, 1-8. Google Scholar

[21]

Aponte G., Herrera W., Gonzalez-G. C., Pleite J., Implementación de un Modelo de un Transformador Eléctrico para el Análisis de su Respuesta en Frecuencia, Información Tecnológica, 2011, 22, 59-72. Google Scholar

[22]

Pleite J., Olías E., Barrado A., Lázaro A., Vázquez J., Modeling the transformer frequency response to develop advanced maintenance techniques, 14th Power Systems Computation, (24-28 June, 2002 Sevilla, Spain), Sevilla, 2002, 1-6. Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.