[1]

Nagarajan P.K., Subramani J., Suyambazhahan S., Sathyamurthy R., Nanofluids for solar collector applications: A Review, 6th Int. Conf. Appl. Energ.-ICAE, Energ. Proced., 2004, 61, 2416-2434. Google Scholar

[2]

Kalogirou S., The potential of solar industrial process heat applications, Appl. Energ., 2003, 76, 337-361. CrossrefGoogle Scholar

[3]

Aste N., Beccali M., Tagliabue L.C., Nomograph for rapid technical and economic assessment of solar thermal systems for DHW production, Sol. Energy., 2012, 86, 2475-2485. Google Scholar

[4]

Pei G., Li J., Ji J., Analysis of low temperature solar thermal electric generation using regenerative Organic Rankine Cycle, Appl. Ther. Eng., 2010, 30, 998-1004. CrossrefGoogle Scholar

[5]

Wang M., Wang J., Zhao Y., Zhao P., Dai Y., Thermodynamic analysis and optimization of a solar-driven regenerative organic Rankine cycle (ORC) based on flatplate solar collectors, Appl. Ther. Eng., 2013, 50, 816-825. CrossrefGoogle Scholar

[6]

Kalogirou S.A., Solar thermal collectors and applications, Prog. Energy. Comb. Sci., 2004, 30, 231-295. CrossrefGoogle Scholar

[7]

Nagarajan P.K., Subramani J., Suyambazhahan S., Sathyamurthy R., Nanofluids for solar collector applications: A review, Enrgy. Proced., 2004, 61, 2416 Google Scholar

[8]

Chaji H., Ajabshirchi Y., Esmaeilzadeh E., Heris S.Z., Hedayati zadeh M., Kahani M., Experimental study on thermal eflciency of flat plate solar collector using TiO_{2} water nanofluid, Mod. Appl. Sci., 2013, 7, 1852-1913. Google Scholar

[9]

Ghasemi S.E., Ahangar G.H.R.M., Numerical analysis of performance of solar parabolic trough collector with Cu-Water nanofluid, Int. J. NanoDime., 2014, 5, 233-240. Google Scholar

[10]

Sharma K., Kundan L., Nanofluid Based Concentrating Parabolic Solar Collector (NBCPSC): A New Alternative, Int. J. Res. Mech. Eng. Tech., 2014, 4, 2249-5762. Google Scholar

[11]

Bellos E., Tzivanidis C., Antonopoulos K.A., Gkinis G., Thermal enhancement of solar parabolic trough collectors by using nanofluids and converging-diverging absorber tube, Renew. Energ., 2016, 94, 213-222. CrossrefGoogle Scholar

[12]

Tong Y., Kim J., Cho H., Effects of thermal performance of enclosed-type evacuated U-tube solar collector with multiwalled carbon nanotube/water nanofluid, Renew. Energ., 2015, 83, 463-473. CrossrefGoogle Scholar

[13]

Kim H., Ham J., Park C., Cho H., Theoretical investigation of the efficiency of a U-tube solar collector using various nanofluids, Energy., 2016, 94, 497-507. CrossrefGoogle Scholar

[14]

Muhammad M.J., Muhammad I.A., Sidik N.A., Yazid A.W.M., Thermal performance enhancement of flat-plate and evacuated tube solar collectors using nanofluid: A review, Int. Commun. Heat. Mass., 2016, 76, 6-15. CrossrefGoogle Scholar

[15]

Ellahi R., Hassan M., Zeeshan A. A study of heat transfer in power law nanpfluid, Therm. Sci., 2016, 20, 2015-2026. CrossrefGoogle Scholar

[16]

Ellahi R., Hassan M., Zeeshan A., Khan A.A, The shape effects of nanoparticles suspended in HFE-7100 over wedge with entropy generation and mixed convection, Appl. Nano. Sci., 2016, 6, 641-651. CrossrefGoogle Scholar

[17]

Sheikholeslami M., Zia Q.M.Z., Ellahi R., Influence of Induced Magnetic Field on Free Convection of Nanofluid Considering Koo-Kleinstreuer-Li (KKL) Correlation, Appl. Sci., 2016, 6(11), 324 CrossrefGoogle Scholar

[18]

Esfahani J.A., Akbarzadeh M., Rashidi S., Rosen M.A., Ellahi R., Influences of wavywall and nanoparticles on entropy generation over heat exchanger plat, Int. J. Heat. Trans., 2017, 109, 1162-1171. CrossrefGoogle Scholar

[19]

Rahman S.U., Ellahi R., Nadeem S., Zia Q.M.Z., Simultaneous effects of nanoparticles and slip on Jeffrey fluid through tapered artery with mild stenosis, J. Mol. Liq., 2016, 218, 484-493. CrossrefGoogle Scholar

[20]

Bhatti M.M., Zeeshan A., Ellahi R., Endoscope analysis on peristaltic blood flow of sisko fluid with titanium magnetonanoparticles, Comp. Biol. Med., 2016, 78, 29-41. CrossrefGoogle Scholar

[21]

Bhatti M.M., Zeeshan A., Ellahi R., Simultaneous effects of coagulation and variable magnetic field on peristaltically induced motion of Jeffrey nanofluid containing gyrotactic microorganism, Microvasc Res., 2017, 110, 32-42. CrossrefGoogle Scholar

[22]

Tyagi S.K., Wang S.W., Singhal M.K., Kaushik S.C., Park S.R., Exergy analysis and parametric study of concentrating type solar collectors, Int. J. Ther. Sci., 2007, 46, 1304-1310. CrossrefGoogle Scholar

[23]

Liu G., Cengel Y.A., Turner R.H., Exergy analysis of a solar heating system, J. Sol. Energ., 1995, 117, 249-251. CrossrefGoogle Scholar

[24]

Reyes E.T., Cervantes de Gortari J.G., Ibarra-Salazar B.A., Picon-Nunez M.A., design method of flat-plate solar collectors based on minimum entropy generation, Exergy., 2001, 1, 46-52. CrossrefGoogle Scholar

[25]

Bejan A., Keary D.W., Kreith F., Second law analysis and synthesis of solar collector systems, J. Sol. Energ., 1981, 103, 23-28. CrossrefGoogle Scholar

[26]

Suzuki A., A fundamental equation for exergy balance on solar collectors, J. Sol. Energ., 1988, 110, 102-106. CrossrefGoogle Scholar

[27]

Farzad J., Emad A., Energetic and exergetic evaluation of flat plate solar collectors, Renew. energ., 2013, 56, 65-63. Google Scholar

[28]

Luminosua I., Fara L., Determination of the optimal operation mode of a flat solar collector by exergetic analysis and numerical simulation, Energy., 2005, 30, 731-747. CrossrefGoogle Scholar

[29]

Farahat S., Sarhaddi F., Ajam H., Exergetic optimization of flat plate solar collectors, Renew. Energ., 2009, 34, 1169-1174. CrossrefGoogle Scholar

[30]

Nasrin R., Parvin S., Alim M.A., Heat Transfer and Collector Efficiency through a Direct Absorption Solar Collector with Radiative Heat Flux Effect, Numer. Heat. Transfer., 2015, 68, 887-907. CrossrefGoogle Scholar

[31]

Said Z., Alim M. A., Janajreh I., Exergy eflciency analysis of a flat plate solar collector using graphene based nanofluid, Mater. Sci. Eng., 2015, 92 Google Scholar

[32]

Yejjer O., Kolsi L., Aich W., Rashed A.A., Borjini M.N., Aissia H. B., Study of three-dimensional natural convection and entropy generation in an inclined solar collector equipped with partitions, Wiley, 2017 Google Scholar

[33]

Moghadam M.C., Edalatpour M., Solano J.P., Numerical study on conjugated laminar mixed convection of alumina/water nanofluid flow, heat transfer, and entropy generation within a tube-on-sheet flat plate solar collector, J. Sol. Energ., 2017 Google Scholar

[34]

Gupta M.K., Kaushik S.C., Exergetic performance evaluation and parametric studies of solar air heater, Energy., 2017 Google Scholar

[35]

Santra A.K., Sen S., Chakraborty N., The forced convection of Cu-water nanfluid in a channel with both Newtonian and Non-Newtonian models. Int. J. Ther. Sci., 2009, 48, 391-400. Google Scholar

[36]

Hussain S.T., Nadeem S., Haq R.Ul., Model-based analysis of micropolar nanofluid flow over a stretching surface, Euro. Phys. J. Plus., 2014, 45, 161 Google Scholar

[37]

Aziz T., Aziz A., Khalique C.M., Exact solutions for stokes flow of a non-newtonian nanofluid model: a lie similarity approach, Z. Naturforsch., 2016 Google Scholar

[38]

Shehzad S.A., Abdullah Z., Alsaedi A., Abbaasi F.M., Hayat T., Boundary thermally radiative three-dimensional flow of Jeffrey nanofluid with internal heat generation and magnetic field, J. Magn. Magn. Mater., 2016, 397, 108-114. CrossrefGoogle Scholar

[39]

Ramzan M., Bilal M., Chung J.D., Farooq U., Mixed convective flow of Maxwell nanofluid past a porous vertical stretched surface - An optimal solution, Results. Phys., 2015, 6, 1072-1079. Google Scholar

[40]

Hayat T., Hussain T., Shezad S.A., Alsaedi A., Flow of Oldroyd-B fluid with nanoparticles and thermal radiation, Appl. Math. Mech., 2015, 36, 69-80. CrossrefGoogle Scholar

[41]

Farooq U., Hayat T., Alsaedi A., Liao S., Heat and mass transfer of two-layer flows of third-grade nano-fluids in a vertical channel, Appl. Math. Comp., 2016, 242, 528-540. Google Scholar

[42]

Mukhopadhyay S., Heat Transfer Analysis of the unsteady flow of a Maxwell fluid over a stretching surface in the presence of a heat source/sink, Chinese. Phys. Soci., 2012, 29 Google Scholar

[43]

Bhaskar N., Reddy P.S., Poornima T., Sreenivasulu P., Influence of variable thermal conductivity onMHDboundary layar slip flow of ethylene-glycol based Cu nanofluids over a stretching sheet with convective boundary condition, Int. J. Eng. Math., 2014, 110. Google Scholar

[44]

Arunachalam, Rajappa N.R., Forced convection in liquid metals with variable thermal conductivityand capacity, Acta. Mechl., 1978, 31 Google Scholar

[45]

Maxwell J., A Treatise on electricity and magneism (second edition), Clar. Press. Oxford. UK., 1881 Google Scholar

[46]

Brewster M.Q., Thermal radiative transfer and properties, Jo. Wiley. Sons., 1992 Google Scholar

[47]

Keller H.B., A New Difference Scheme for Parabolic Problems. In: Hubbard, B., Ed., Numerical Solutions of Partial Differential Equations, Acad. Press, New York., 1971, 2, 327-350. Google Scholar

[48]

Abel M.S., Tawade J.V., Nandeppanavar M.M., MHD flow and heat transfer for the upper-convected Maxwell fluid over a stretching sheet, Meccanica., 2012, 47, 385-393. CrossrefGoogle Scholar

[49]

Grubka L.J., Bobba K.M., Heat transfer characteristics of a continuous, stretching surface with variable temperature, ASME, J. Heat. Trans., 1985, 107, 248-250. CrossrefGoogle Scholar

[50]

Me A., Heat transfer characteristics of a continuous stretching surface. ASME, J. Heat. Trans., 1994, 29, 227-234. Google Scholar

[51]

Ishak A., Nazar R., Pop I., Mixed convection on the stagnation point flow towards a vertical, continuously stretching sheet. J. Heat. Trans., 2007,129,1087-1090. CrossrefGoogle Scholar

[52]

Ishak A., Nazar R., Pop I., Boundary layer flow and heat transfer over an unsteady stretching vertical surface. Meccanica., 2009, 44, 369-375. CrossrefGoogle Scholar

[53]

Das S., Chakraborty S., Jana R.N., Makinde O.D., Entropy analysis of unsteady magneto-nanofluid flow past accelerating stretching sheet with convective boundary condition, Adv. Appl. Math. Mech., 2015, 36, 1593-1610. CrossrefGoogle Scholar

[54]

Sharma R., Ishak A., Pop I., Partial slip flow and heat transfer over a stretching sheet in a nanofluid, Math. Probl. Eng., 2013, 2013, 724547. Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.