[1]

Floer A., The unregularized gradient flow of the symplectic action, Comm. Pure Appl. Math., 1988, 41(6), 775-813. CrossrefGoogle Scholar

[2]

Floer A., Witten’s complex and infinite-dimensional Morse theory. J. Diff. Geom., 1989, 30, 202-221. Google Scholar

[3]

Floer A., An instanton-invariant for 3-manifolds, Comm. Math. Phys., 1988, 118, 215-240. CrossrefGoogle Scholar

[4]

Fukaya K., Morse homotopy and its quantization, In: W. H. Kazez (ed.) Geometric Topology, Georgia International Topology Conference (August 2-13, 1993, Athens, Georgia, USA), Ams/Ip Studies in Advanced Mathematics, Amer. Math. Soc., 1996, 409-441. Google Scholar

[5]

Fukaya K., Morse homotopy and Chern-Simons perturbation theory, Comm. Math. Phys., 1996, 181, 37-90. CrossrefGoogle Scholar

[6]

Fukaya K., Oh Y.-G., Ohta H., Ono K., Antisymplectic involution and Floer cohomology, Geom. & Topol., 2017, 21, 1-106. CrossrefGoogle Scholar

[7]

Fukaya K., Oh Y.-G., Ohta H., Ono K., Lagrangian Floer theory on compact toricmanifolds I, Duke Math. J., 2010 151, 23-174. CrossrefGoogle Scholar

[8]

Goupi A., Schaeffer G., Factoring N-Cycles and Counting Maps of Given Genus, Europ. J. Combin., 1998, 19(7), 819-834. CrossrefGoogle Scholar

[9]

Schaeffer G., Jacquard B., A Bijective Census of Nonseparable Planar Maps, Journal of Combinatorial Theory, Series A, 1998, 83(1), 1-20. CrossrefGoogle Scholar

[10]

Bousquet-Melou M., Schaeffer G., Enumeration of Planar Constellations, Adv. Appl. Math., 2000, 24, 337- 368. CrossrefGoogle Scholar

[11]

Poulalhon D., Schaeffer G., A bijection for triangulations of a polygon with interior points and multiple edges, Theoret. Comp. Sci., 2003, 307(2), 385-401. CrossrefGoogle Scholar

[12]

Bonichon N., Gavoille C., Hanusse N., Poulalhon, D, Schaeffer, G., Planar Graphs, via Well-Orderly Maps and Trees, Graphs and Combinatorics, 2006, 22(2), 185-202. CrossrefGoogle Scholar

[13]

Fusy E., Poulalhon D., Schaeffer G., Bijective counting of plane bipolar orientations and Schnyder woods, European J. Combin., 2009, 30(7), 1646-1658. CrossrefGoogle Scholar

[14]

Atiyah M., New invariants of 3- and 4-dimensional manifolds, In: Wells Jr R.O. (ed.), Proceedings of Symposia in Pure Mathematics, 1988, 48, 285-299. Paper presented at the mathematical heritage of Hermann Weyl, (12-16 May, 1987, Durham, NC), American Mathematical Society (Providence, RI). Google Scholar

[15]

Witten E., Supersymmetry and Morse theory, J. Diff. Geom., 1982, 17, 661-692. CrossrefGoogle Scholar

[16]

Cachazo F., Svrcek P., Witten E., MHV vertices and tree amplitudes in gauge theory, J. High Energy Phys., 2004, 09, 006. Google Scholar

[17]

Hooft G., Dimensional Reduction in Quantum Gravity, 1993, arXiv:gr-qc/9310026v2 Google Scholar

[18]

Ivanyos G., Klauck H., Lee T., Santha M., de Wolf R., New bounds on the classical and quantum communication complexity of some graph properties, 2012, arXiv:1204.4596v1 Google Scholar

[19]

Di Francesco P., Ginsparg P.H., Zinn-Justin J., 2D Gravity and Random Matrices, Phys. Rep., 1995, 254, 1. CrossrefGoogle Scholar

[20]

Rossky P.J., Karplus M., The enumeration of Goldstone diagrams in many-body perturbation theory, J. Chem. Phys., 1976, 64, 1596. CrossrefGoogle Scholar

[21]

Kuchinskii E.Z., Sadovskii M. V., Combinatorial analysis of Feynman diagrams in problems with a Gaussian random field. J. Experim. Theoret. Phys., 1998, 86(2), 367. CrossrefGoogle Scholar

[22]

Kleinert H., Pelster A., Kasteing B., Bachmann M., Recursive graphical construction of Feynman diagrams and their multiplicities in _4 and _2 A theory, Phys. Rev. E, 2000, 62, 1537-1559. CrossrefGoogle Scholar

[23]

Riddel Jr R.J., The number of Feynman diagrams, Phys. Rev., 1953, 91, 1243. CrossrefGoogle Scholar

[24]

Brouder Ch., Runge-Kutta methods and renormalization, Europ. Phys. J. C, 2000, 12(3), 521–534. CrossrefGoogle Scholar

[25]

Brouder Ch., On the trees of quantum fields, Europ. Phys. J. C, 2000, C12(3), 535-549. Google Scholar

[26]

Brouder Ch., Frabetti A., Renormalization of QED with planar binary trees, Europ. Phys. J. C, 2001, 19(4), 715-741. CrossrefGoogle Scholar

[27]

Cvitanović P., Lautrup B., Pearson R.B., Number and weights of Feynman diagrams, Phys. Rev. D, 1978, 18, 1939-55. CrossrefGoogle Scholar

[28]

Arqučs D., Béraud J.-F., Rooted maps on orientable surfaces, Riccati’s equation and continued fractions, Discr. Math., 2000, 215, 1-12. Google Scholar

[29]

Arqučs D., Relations fonctionelles et denombremant des cartes pointees sur le tore, J. Combin. Theory, Series B, 1987, 43, 253-274. CrossrefGoogle Scholar

[30]

Van Houcke K., Werner F., Kozik E., Prokof’ev N., Svistunov, B., Ku M.J.H., Sommer A.T., Cheuk L.W., Schirotzek A., Zwierlein M.W., Feynman diagrams versus Fermi-gas Feynman emulator, Nat. Phys., 2012, 8, 366-370. CrossrefGoogle Scholar

[31]

Drischler C., Hebeler K., Schwenk A., Chiral interactions up to N3LO and nuclear saturation, 2017, arXiv: 1710.08220. Google Scholar

[32]

Furry W.H., A Symmetry Theorem in the Positron Theory. Phys. Rev., 1937, 51, 125. CrossrefGoogle Scholar

[33]

Tutte W.T., A census of slicings, Can. J. Math., 1962, 14, 708-722. CrossrefGoogle Scholar

[34]

Tutte W.T., A census of planar maps, Can. J. Math., 1963, 15, 249-271. CrossrefGoogle Scholar

[35]

Tutte W.T., On the enumeration of planar maps, Bulletin of the Amer. Math. Soc., 1968, 74(1), 64-74. CrossrefGoogle Scholar

[36]

Brown W.G., Enumerative problems of linear graph theory (PhD Thesis), University of Toronto, 1963 Google Scholar

[37]

Brown W.G., On the number of nonplanar maps. Memoirs of the American Mathematical Society, 1966, 65, 1-42. Google Scholar

[38]

Brown W.G., Tutte, W.T., On the enumeration of rooted nonseparable planar maps, Can. J. Math., 1964, 16, 572-577. CrossrefGoogle Scholar

[39]

Walsh T.R., Lehman A.B., Counting rooted maps by genus I, J. Combin. Theory, Series B, 1972, 13, 192-218. CrossrefGoogle Scholar

[40]

Walsh T.R., Lehman A.B., Counting rooted maps by genus II, J. Combin. Theory, Series B, 1972, 13, 122-141. CrossrefGoogle Scholar

[41]

Walsh T.R., Lehman A.B., Counting rooted maps by genus III, J. Combin. Theory, Series B, 1975, 18, 222-259. CrossrefGoogle Scholar

[42]

Cairns S.S., Introductory Topology, Ronald Press, New York, 1961 Google Scholar

[43]

Bender E.A., Canfield, E.R., The number of degree restricted rooted maps on the sphere, SIAM J. Discr. Math., 1994, 7, 9-15. CrossrefGoogle Scholar

[44]

Bender E.A., Canfield E.R., The asymptotic number of rooted maps on a surface. J. Combin. Theory, Series A, 1986, 43, 244-257.CrossrefGoogle Scholar

[45]

Bender E.A., Canfield E.R., Robinson R.W., The enumeration of maps on the torus and the projective plane, Can. Math. Bulletin, 1988, 31, 257-271.CrossrefGoogle Scholar

[46]

Bender E.A., Canfield, E.R., The number of rooted maps on an orientable surface, J. Combin. Theory, Series B, 1991, 53, 293-299. CrossrefGoogle Scholar

[47]

Touchard J., Sur une probleme de configurations et sur les fractions continues, Can. J. Math., 1952, 4, 2-25. CrossrefGoogle Scholar

[48]

Courcelle B., Dussuax V., Map genus, forbidden maps, and monadic second-order logic, Electr. J. Combin., 2002, 9(1), R40, 27. Google Scholar

[49]

Krikun M.A., Malyshev V.A., Asymptotic number of maps on compact orientable surfaces, Discr. Math. Applic., 2001, 11, 145-255. Google Scholar

[50]

Krikun M.A., Malyshev V.A., Random Boundary of a Planar Map, In: D. Gardy, A. Mokkadem (Eds.) Trends in Mathematics, Mathematics and Computer Science, BirkHauser, 2002, 83-93. Google Scholar

[51]

Krikun M.A., Malyshev V.A., Asymptotic Combinatorics with Applications to Mathematical Physics, Kluwer, 2002 Google Scholar

[52]

Schaeffer G., Bijective Census and Random Generation of Eulerian Planar Maps with Prescribed Vertex Degrees, The Electr. J. Combin., 1997, 4(1), n.R20 Google Scholar

[53]

Schaeffer G., Poulalhon, D., A note on bipartite Eulerian planar maps, 2002, www.lix.polytechnique.fr/~Oschaeffe/Biblio/PoSc02b.ps

[54]

Schaeffer G., Conjugaison d’arbres et cartes combinatoires aleatoires (PhD thesies), University Bordeaux 1, 1998 Google Scholar

[55]

Jackson D.M., Visentin, T.I., An atlas of the smaller maps in orientable and nonorientable surfaces, Chapman & Hall/CRC, 2000 Google Scholar

[56]

Yanpei L., Enumerative Theory of Maps, Kluwer Academic Publishers, 2000 Google Scholar

[57]

Dodson C.T., Parker P.E., A user’s guide to algebraic topology, Kluwer Academic Publishers, 1997 Google Scholar

[58]

Fetter A.L., Walecka J.D., Quantum theory of many particle systems, McGraw-Hill Publishing Company, 1971 Google Scholar

[59]

Dickhoff W.H., Van Neck D., Many-Body Theory Exposed! Propagator description of Quantum Mechanics in Many-Body Systems, World Scientific Publishing Company, 2006 Google Scholar

[60]

Stefanucci G., Van Leeuwen R., Non-Equilibrium Many- Body Theory of Quantum Systems, Cambridge Univ. Press, 2013 Google Scholar

[61]

Carsten T., The graph genus problem is NP-complete, J. Algorithms, 1989, 10(4), 568-576. CrossrefGoogle Scholar

[62]

Kang J.S., Dynamical symmetry breaking of U(N)-symmetric gauge theory in the 1/N expansion, Phys. Rev. D, 1976, 14, 1587-1601. CrossrefGoogle Scholar

[63]

Gross D.J., Mikhailov A., Roiban R., A calculation of the plane wave string Hamiltonian from N = 4 super-Yang-Mills theory, J. High Energy Phys., 2003, 0305, 025. Google Scholar

[64]

Nayak C., Many Body Physics, University of California, Los Angeles, 1999 Google Scholar

[65]

Schwarz J.H., Update on String Theory, 2003, arXiv:astroph/0304507v1. Google Scholar

[66]

Wick G.C., The Evaluation of the Collision Matrix, Physical Review, 1950, 80, 268. CrossrefGoogle Scholar

[67]

Ursell H.D., The evaluation of Gibbs’ phase-integral for imperfect gases, Proceedings of the Cambridge Philosophical Society, 1927, 23, 685. CrossrefGoogle Scholar

[68]

Mayer J.E., Mayer M.G., Statistical Mechanics, John Wiley and Sons, New York, 1941 Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.