[1]

Carroll T.L., Pecora L.M., Synchronizing chaotic circuits, IEEE Trans. Circuits Syst., 1991, 38(4), 453–456 CrossrefGoogle Scholar

[2]

Wen G., Grassi G., Feng Z., Liu X.. Special issue on advances in nonlinear dynamics and control, J. Franklin Inst., 2015, 8(352), 2985–2986 Web of ScienceGoogle Scholar

[3]

Brucoli M., Carnimeo L., Grassi G., A method for the synchronization of hyperchaotic circuits, Int. J. Bifurcat. Chaos, 1996, 6(09), 1673–1681 CrossrefGoogle Scholar

[4]

Grassi G., Mascolo S., Synchronisation of hyperchaotic oscillators using a scalar signal, Electron. Lett., 1998, 34(5), 424–425 CrossrefGoogle Scholar

[5]

Brucoli M., Cafagna D., Carnimeo L., Grassi G., Synchronization of hyperchaotic circuits via continuous feedback control with application to secure communications, Int. J. Bifurcat. Chaos, 1998, 8(10), 2031–2040 CrossrefGoogle Scholar

[6]

Cafagna D., Grassi G., Observer-based projective synchronization of fractional systems via a scalar signal: application to hyperchaotic Rössler systems, Nonlinear Dyn., 2012, 68(1), 117–128 CrossrefGoogle Scholar

[7]

Ouannas A., Grassi G., A new approach to study the coexistence of some synchronization types between chaotic maps with different dimensions, Nonlin. Dyn., 2016, 86(2), 1319–1328 CrossrefGoogle Scholar

[8]

Ouannas A., Al-sawalha M.M., Synchronization between different dimensional chaotic systems using two scaling matrices, Optik, 2016, 127(2), 959–963 Web of ScienceCrossrefGoogle Scholar

[9]

Ouannas A., Al-sawalha M.M., On λ-*ϕ* generalized synchronization of chaotic dynamical systems in continuous-time, Eur. Phys. J. Spec. Top., 2016, 225(1), 187–196 CrossrefGoogle Scholar

[10]

Ouannas A., Azar A.T., Ziar T., On inverse full state hybrid function projective synchronization for continuous–time chaotic dynamical systems with arbitrary dimensions, Diff. Eq. Dyn. Syst., 2017, 1–14 Google Scholar

[11]

Ouannas A., Azar A.T., Vaidyanathan S., New hybrid synchronisation schemes based on coexistence of various types of synchronisation between master-slave hyperchaotic systems, Int.J. Comput. App. Tech., 2017, 55(2), 112–120 CrossrefGoogle Scholar

[12]

Ouannas A., A new generalized-type of synchronization for discrete-time chaotic dynamical systems, J. Comput Nonlin. Dyn., 2015, 10(6), 061019 CrossrefWeb of ScienceGoogle Scholar

[13]

Ouannas A., Al-Sawalha M.M. A new approach to synchronize different dimensional chaotic maps using two scaling matrices, Nonlin. Dyn. Syst. Theory, 2015 15 400–408 Google Scholar

[14]

Ouannas A., Co-existence of various types of synchronization between hyperchaotic maps, Nonlinear Dyn. Syst. Theory, 2016, 16, 312–321 Google Scholar

[15]

Ouannas A., Odibat Z., Shawagfeh N., A new q–s synchronization results for discrete chaotic systems, Diff. Eq. Dyn. Syst., 2016, 1–10. Google Scholar

[16]

Ouannas A., Odibat Z., Shawagfeh N., Alsaedi A., Ahmad B., Universal chaos synchronization control laws for general quadratic discrete systems, Appl. Math. Mod., 2017, 45, 636–641 CrossrefGoogle Scholar

[17]

Ouannas A., Azar A.T., Abu-Saris R., A new type of hybrid synchronization between arbitrary hyperchaotic maps, Int. J. Mach. Learn. Cyb., 2016, 1–8 Google Scholar

[18]

Mainieri R., Rehacek J., Projective synchronization in three-dimensional chaotic systems, Phys. Rev. Lett., 1999, 82(15), 3042 CrossrefGoogle Scholar

[19]

Chee C.Y., Xu D., Control of the formation of projective synchronisation in lower-dimensional discrete-time systems, Phys. Lett. A, 2003, 318(1), 112–118 CrossrefGoogle Scholar

[20]

Grassi G., Miller D.A., Arbitrary observer scaling of all chaotic drive system states via a scalar synchronizing signal, Chaos, Solitons & Fractals, 2009, 39(3), 1246–1252 Web of ScienceCrossrefGoogle Scholar

[21]

Grassi G., Miller D.A., Projective synchronization via a linear observer: application to time-delay, continuous-time and discretetime systems, Int. J. Bifurcat. Chaos, 2007, 17(04), 1337–1342 CrossrefGoogle Scholar

[22]

Hu M., Xu Z., Zhang R., Hu A., Parameters identification and adaptive full state hybrid projective synchronization of chaotic (hyper-chaotic) systems, Phys. Lett. A, 2007, 361(3), 231–237 CrossrefWeb of ScienceGoogle Scholar

[23]

Hu M., Xu Z., Zhang R., Full state hybrid projective synchronization in continuous-time chaotic (hyperchaotic) systems, Commun. Nonlinear Sci., 2008, 13(2), 456–464 CrossrefWeb of ScienceGoogle Scholar

[24]

Hu M., Xu Z., Zhang R., Full state hybrid projective synchronization of a general class of chaotic maps, Commun. Nonlinear Sci., 2008, 13(4), 782–789 CrossrefWeb of ScienceGoogle Scholar

[25]

Grassi G., Miller D.A., Dead-beat full state hybrid projective synchronization for chaotic maps using a scalar synchronizing signal, Commun. Nonlinear Sci., 2012, 17(4), 1824–1830 CrossrefWeb of ScienceGoogle Scholar

[26]

Hao D., Li-Xin J., Yan-Bin Z., Adaptive generalized matrix projective lag synchronization between two different complex networks with non-identical nodes and different dimensions, Chin. Phys. B, 2012, 21(12), 120508 CrossrefWeb of ScienceGoogle Scholar

[27]

Wu Z., Xu X., Chen G., Fu X., Generalized matrix projective synchronization of general colored networks with differentdimensional node dynamics, J. Franklin Inst., 2014, 351(9), 4584–4595 CrossrefGoogle Scholar

[28]

Ouannas A., Mahmoud E.E., Inverse matrix projective synchronization for discrete chaotic systems with different dimensions, J Comput. Intell. Electron. Syst., 2014, 3(3), 188–192 CrossrefGoogle Scholar

[29]

Ouannas A., Abu-Saris R., On matrix projective synchronization and inverse matrix projective synchronization for different and identical dimensional discrete-time chaotic systems, J. Chaos 2016, 2016, 4912520 Google Scholar

[30]

Ma Z.-J., Liu Z.-R., Zhang G., Generalized synchronization of discrete systems, Appl. Math. Mech., 2007, 28(5), 609–614 CrossrefGoogle Scholar

[31]

Lu J., Generalized (complete, lag, anticipated) synchronization of discrete-time chaotic systems, Commun. Nonlinear Sci., 2008, 13(9), 1851–1859 Web of ScienceCrossrefGoogle Scholar

[32]

Grassi G., Generalized synchronization between different chaotic maps via dead-beat control, Chin. Phys. B, 2012, 21(5), 050505 CrossrefWeb of ScienceGoogle Scholar

[33]

Ouannas A., Odibat Z., On inverse generalized synchronization of continuous chaotic dynamical systems, Int. J. Appl. Comput. Math., 2016, 2(1), 1–11 CrossrefGoogle Scholar

[34]

Itoh M., Yang T., Chua L.O., Conditions for impulsive synchronization of chaotic and hyperchaotic systems, Int. J. Bifurcat. Chaos, 2001, 11(02), 551–560 CrossrefGoogle Scholar

[35]

Ahn C.K., T–S fuzzy H^{∞} synchronization for chaotic systems via delayed output feedback control, Nonlinear Dyn., 2010, 59, 535–543 CrossrefWeb of ScienceGoogle Scholar

[36]

Ahn C.K., Takagi–Sugeno fuzzy receding horizon H^{∞} chaotic synchronization and its application to the Lorenz system, Nonlinear Anal. Hybri. Syst., 2013, 9, 1–8 CrossrefWeb of ScienceGoogle Scholar

[37]

Grassi G., Miller D.A., Theory and Experimental realization of observer-based hyperchaos synchronization, IEEE Trans. on CAS-I, 2002, 49, 373-378 CrossrefGoogle Scholar

[38]

Pecora L.M., Carroll T.L., Synchronization of chaotic circuits. Chaos, 2015, 25, 097611 Web of ScienceCrossrefGoogle Scholar

[39]

Abrams D.M., Pecora L.M., Motter A.E, Introduction to focus issue - Patterns of network synchronization, Chaos, 2016, 26, 094601 Web of ScienceCrossrefGoogle Scholar

[40]

Mossa Al-Sawalha M., Al-Sawalha A., Anti-synchronization of fractional order chaotic and hyperchaotic systems with fully unknown parameters using modified adaptive control, OpenPhys., 2016, 14, 304–313 Google Scholar

[41]

Kocamaz U.E., Cevher B., Uyaroğlu Y., Control and synchronization of chaos with sliding mode control based on cubic reaching rule, Chaos, Solitons & Fractals, 2017, 105, 92–98 Web of ScienceCrossrefGoogle Scholar

[42]

Carroll T.L., Chaos for low probability of detection communications, Chaos, Solitons & Fractals, 2017, 103, 238-245 CrossrefWeb of ScienceGoogle Scholar

[43]

Petereit J., Pikovsky A., Chaos synchronization by nonlinear coupling, Commun. Nonlinear Sci. Numer. Simul., 2017, 44, 344-351 CrossrefWeb of ScienceGoogle Scholar

[44]

Duan J.-S., Cheng C.-P., Chen L., A comparison study of steady-state vibrations with single fractional-order and distributed-order derivatives, Open Phys., 2017, 15, 809–818 CrossrefWeb of ScienceGoogle Scholar

[45]

Egunjobi A.I., Olusola O.I., Njah A.N., Saha S., Dana S.K., Experimental evidence of chaos synchronization via cyclic coupling, Commun. Nonlinear Sci. Numer. Simul., 2018, 56, 588-595 Web of ScienceCrossrefGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.