Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Physics

formerly Central European Journal of Physics

Editor-in-Chief: Seidel, Sally

Managing Editor: Lesna-Szreter, Paulina

1 Issue per year


IMPACT FACTOR 2017: 0.755
5-year IMPACT FACTOR: 0.820

CiteScore 2017: 0.83

SCImago Journal Rank (SJR) 2017: 0.241
Source Normalized Impact per Paper (SNIP) 2017: 0.537

Open Access
Online
ISSN
2391-5471
See all formats and pricing
More options …
Volume 16, Issue 1

Issues

Volume 13 (2015)

New type of chaos synchronization in discrete-time systems: the F-M synchronization

Adel Ouannas / Giuseppe Grassi / Abdulrahman Karouma / Toufik Ziar / Xiong Wang / Viet–Thanh Pham
  • Corresponding author
  • Modeling Evolutionary Algorithms Simulation and Artificial Intelligence, Faculty of Electrical & Electronics Engineering, Ton Duc Thang University, Ho Chi Minh City, Vietnam
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-04-18 | DOI: https://doi.org/10.1515/phys-2018-0025

Abstract

In this paper, a new type of synchronization for chaotic (hyperchaotic) maps with different dimensions is proposed. The novel scheme is called FM synchronization, since it combines the inverse generalized synchronization (based on a functional relationship F) with the matrix projective synchronization (based on a matrix M). In particular, the proposed approach enables FM synchronization with index d to be achieved between n-dimensional drive system map and m-dimensional response system map, where the synchronization index d corresponds to the dimension of the synchronization error. The technique, which exploits nonlinear controllers and Lyapunov stability theory, proves to be effective in achieving the FM synchronization not only when the synchronization index d equals n or m, but even if the synchronization index d is larger than the map dimensions n and m. Finally, simulation results are reported, with the aim to illustrate the capabilities of the novel scheme proposed herein.

Keywords: Inverse generalized synchronization; matrix projective synchronization; chaotic systems; discrete-time systems; Lyapunov stability theory

PACS: 05.45.Gg; 05.45.Xt

1 Introduction

The idea of synchronizing two identical chaotic systems that start from different initial conditions was introduced by Pecora and Carroll [1]. Using a transmitted signal, they showed that synchronization occurs when the Lyapunov exponents for the response subsystem are all negative. Since that pioneering paper, the issue of chaos synchronization has attracted great interest in nonlinear science and engineering [2,3,4,5, 34,35,36,37,38,39,40,41,42,43,44,45]. At the beginning, by modifying the Pecora-Carroll scheme, most of the methods have focused on complete (identical) synchronization [3,4. Subsequently, different types of synchronization have been proposed in the literature, for both continuous-time systems and discrete-time systems [7,8,9,10,11,12,13,14,15,16,17]. Among these, projective synchronization provides response system variables that are scaled replicas of the drive system variables [6, 18,19,20,21].

A variation of projective synchronization is the so-called full state hybrid projective synchronization [22,23,24,25]. In this type of synchronization the scaling factor can be different for each state variable, meaning that the single scaling parameter (originally introduced in Ref. [18]) is replaced by a diagonal scaling matrix. On the other hand, when the scaling matrix is a full matrix, the so-called matrix projective synchronization is achieved [26,27,28,29].

Another interesting approach is represented by generalized synchronization, where the drive system and the response system are non-identical dynamical systems [30,31,32]. This type of synchronization is characterized by the existence of a functional relationship F between the state of the drive system and the state y of the response system, so that y=F(x) after a transient time. A variation is represented by the inverse generalized synchronization, where the synchronization condition becomes x = F(x) after a transient time [33].

By exploiting previous considerations and by taking into account the concepts of inverse generalized synchronization and matrix synchronization, a new type of synchronization for chaotic maps with different dimensions is proposed in this paper. Specifically, given n-dimensional drive system map and m-dimensional response system map, the novel scheme is called FM synchronization with index d since it combines the inverse generalized synchronization (based on a functional relationship F), with the matrix projective synchronization (based on a matrix M). Note that the synchronization index d corresponds to the dimension of the synchronization error. The technique, which exploits nonlinear controllers and Lyapunov stability theory, proves to be effective in achieving the FM synchronization not only when the synchronization index d equals n or m, but even if the synchronization index d is larger than the map dimensions n and m.

The paper is organized as follows. In Section 2, the FM synchronization with index d is defined. In Section 3, three different theorems are provided, which cover three different FM synchronization cases, with indices d = m, d = n and d larger than m and n, respectively. Finally, in order to show the capabilities of the conceived synchronization schemes, Section 4 illustrates the FM synchronization between the two-dimensional Fold map and the three-dimensional generalized Hénon map, when the synchronization indices are d = 3, d = 2 and d = 4, indicating that the method is effective in achieving synchronization even if the synchronization index d is larger than the map dimensions n and m.

2 F – M synchronization with index d

The drive and the response chaotic systems considered herein are in the following forms

X(k+1)=AX(k)+f(X(k))(1)

Y(k+1)=BY(k)+g(Y(k))+U,(2)

where X(k) ∈ ℝn and Y(k) ∈ ℝm are state vectors of the drive and slave systems, respectively, A ∈ ℝn×n and B ∈ ℝm×m are the linear parts of the drive system and response system, respectively, f : ℝn → ℝn and g : ℝm → ℝm are the nonlinear parts of the drive system and response system, respectively, and U ∈ ℝm is a vector controller.

Before introducing the new concept of FM synchronization for the drive system (1) and the response system (2), the definitions of matrix projective synchronization (MPS) and inverse generalized synchronization (IGS) are provided.

Definition 2.1

Matrix projective synchronization is said to be achieved between the n-dimensional drive system X(k) and m-dimensional response system Y(k) if there exists a controller U = (ui)1≤im and an m × n matrix M such that the synchronization error

e(k)=Y(k)MX(k)(3)

satisfies the condition limk→∞e(k)║ = 0.

Definition 2.2

Inverse generalized synchronization is said to be achieved between the n-dimensional drive system X(k) and m-dimensional response system Y(k) if there exists a controller U = (ui)1≤im and a map F : ℝm → ℝn such that the synchronization error

e(k)=F(Y(k))X(k)(4)

satisfies the condition limk→∞e(k)║ = 0.

Next, we introduce a new type of synchronization.

Definition 2.3

The n-dimensional drive system (1) and m-dimensional response system (2) with state vectors X(k) and Y(k), respectively, achieve FM synchronization if there exists a controller U = (ui)1≤im, a map F : ℝm → ℝd and a d × n matrix M such that the synchronization error

e(k)=F(Y(k))MX(k)(5)

satisfies the condition limk→∞e(k)║ = 0. The constant d is called the synchronization index and represents the dimension of the FM synchronization.

3 F – M synchronization criterions

In this section, different cases of synchronization are analyzed. The first case is when the synchronization index d equals m, i.e., the dimension of the response system. The second case is when the synchronization index d equals n, i.e., the dimension of the drive system. Finally, the case when the synchronization index d is larger than both m and n is analyzed in details.

3.1 Case: d = m

Theorem 3.1

Given the drive system (1), the response system (2), an invertible function F : ℝm → ℝm and a matrix M ∈ ℝm×n, FM synchronization with index m is achieved if the controller U in (2) is given by

U=BY(k)g(Y(k))+F1(R1),(6)

where F–1 is the inverse function of F and

R1=(L1B)e(k)M(AX(k)+f(X(k))),(7)

provided that L1 ∈ ℝm×m is chosen such that the eigenvalues of the matrix (BL1) are placed strictly inside the unit disk.

Proof

According to definition 2.3, the error system between the drive system (1) and the response system (2) can be derived as follows:

e(k+1)=(BL1)e(k)+F(BY(k)+g(y(k))+U)+R1.(8)

By substituting the control law (6) along with (7), the error system (8) reduces to

e(k+1)=(BL1)e(k).(9)

If the eigenvalues of the matrix (BL1) are placed strictly inside the unit disk, then, from the asymptotic stability theory of linear discrete-time systems, it follows that all the solutions of the error system (9) go to zero as k → ∞. Therefore, the systems (1) and (2) are globally FM synchronized with index m.□

3.2 Case: d = n

In this case, the synchronization index d is taken as the dimension of the drive system n.

Theorem 3.2

FM synchronization between the drive system (1) and the response system (2) will be achieved if the controller U is selected as follows:

U=BY(k)g(Y(k))+F1(R2),(10)

where F–1 : ℝn → ℝm is the inverse function of F : ℝm → ℝn and

R2=(L2A)e(k)M(AX(k)+f(X(k))),(11)

provided that ((AL2)T(AL2) – I) is a negative definite matrix and L2 and M two matrices of dimension (n × n).

Proof

The error system between the drive system (1) and the response system (2) given in (5) can be rewritten as follows:

e(k+1)=(AL2)e(k)+F(BY(k)+g(Y(k))+U)+R2.(12)

By substituting the control law (10) into (12) along with (11), the error system becomes

e(k+1)=(AL2)e(k).(13)

By constructing the candidate Lyapunov function in the form V(e(k)) = eT(k)e(k), it follows that

ΔV(e(k))=eT(k+1)e(k+1)eT(k)e(k)=eT(k)(AL2)T(AL2)e(k)eT(k)e(k)=eT(k)[(AL2)T(AL2)I]e(k).

Since by assumption, ((AL2)T(AL2) – I) is a negative definite matrix, it follows that ΔV(e(k)) < 0. Thus, from the Lyapunov stability theory, the zero solution of the error system (13) is globally asymptotically stable, i.e., limk→∞e(k)║ = 0. Consequently, systems (1) and (2) are globally FM synchronized with index n.□

3.3 Case: dn, m

In this case, the synchronization index d is taken as the dimension of the drive system n.

Theorem 3.3

FM synchronization between the drive system (1) and the response system (2) will be achieved if the controller U is selected as follows:

U=BY(k)g(Y(k))+F1(R3),(14)

where R3 is given by

R3=L3e(k)M(AX(k)+f(X(k))),(15)

with L3 = diag(l1, l2,…, ld), F : ℝm→ℝd, F–1 : ℝd → ℝm and M ∈ ℝd×n, provided that all the elements li satisfy the condition

0<|li|<1,i=1,2,,d.(16)

Proof

The error system between systems (1) and (2) can be written as:

e(k+1)=L3e(k)+F(BY(k)+g(Y(k))+U)+R3.(17)

By substituting the control law (14), along with (15), the error system becomes

e(k+1)=L3e(k).(18)

We consider the quadratic Lyapunov function

V(e(k))=i=1dei2(k).

It follows that

ΔV(e(k))=V(e(k+1))V(e(k))=i=1dei2(k+1)i=1dei2(k)=i=1d(li21)ei2(k).

By condition (16), ΔV(e(k)) < 0. Thus, from the Lyapunov stability theory, it follows that limk→∞ ei(k) = 0 for i= 1, 2, …, d and hence, systems (1) and (2) are globally FM synchronized with dimension dn,m.□

4 Synchronization examples using the 2-D Fold map and the 3-D generalized Hénon map

In this section, we validate the theoretical results illustrated above. The Fold map is considered as the drive system and the controlled three-dimensional generalized Hénon map is taken as the response system. The Fold map can be described as follows:

x1(k+1)=x2(k)+ax1(k)x2(k+1)=b+x12(k).(19)

When a = –0.1 and b = –1.7, the chaotic attractor of the Fold map with the initial valuables x1 (0) = – 0.5 and x2 (0) = –0.3 is displayed in Figure 1(a) [34].

The chaotic attractors of the drive and response systems
Figure 1

The chaotic attractors of the drive and response systems

Note that the linear part and nonlinear part of the map (19) are given by

A=a100 and f(Xk)=0b+x12(k).

The controlled three-dimensional generalized Hénon map can be described as

y1(k+1)=βy2(k)+u1y2(k+1)=y3(k)+1αy22(k)+u2y3(k+1)=βy2(k)+y1(k)+u3,(20)

where U = [u1, u2, u3]T is the vector controller. The 3D generalized Hénon map, i.e., system (20) with U = [0, 0, 0]T, is chaotic when α = 1.07 and β = 0.3 [35] as shown in Figure 1 (b). Similarly, the linear part and nonlinear part of system (20) are given by

B=0β00011β0 and g(Y(k))=01αy22(k)0.

4.1 F – M synchronization with index d = 3

In this case, the map F and the scaling matrix M are selected as follows:

F(y1(k),y2(k),y3(k))=[y1(k)+y2(k),y22(k),y3(k)]T,(21)

M=110230.(22)

Then, the error system is defined as

e1(k)=y1(k)+y2(k)x1(k)+x2(k)e2(k)=y22(k)2x2(k)e3(k)=y3(k)3x1(k).(23)

According to Theorem 3.1, if the controller U is selected as in (6), then, the matrix

L1=0.1β000.211β0.3(24)

yields error system

e1(k+1)=0.1e1(k)e2(k+1)=0.2e2(k)e3(k+1)=0.3e3(k),(25)

with eigenvalues placed strictly inside the unit disk. As a consequence, FM synchronization with index d = 3 is achieved between the Fold map and the 3D generalized Hénon map as shown in Figure 2.

The error system of the F – M synchronization with index d = 3 as a function of k
Figure 2

The error system of the FM synchronization with index d = 3 as a function of k

4.2 F – M synchronization with index d = 2

In this case, the map F and the scaling matrix M are chosen as follows

F(y1(k),y2(k),y3(k))=[y1(k)+y3(k),y2(k),y3(k)]T,(26)

M=1101.(27)

By considering (5), the error system is written as

e1(k)=y1(k)+y3(k)x1(k)+x3(k)e2(k)=y2(k)y3(k)x2(k).(28)

According to Theorem 3.2, by taking the controller U as in (10)-(11) and by selecting the following matrix

L2=0100.5,(29)

it can be readily shown that the matrix ((AL2)T(AL2)–I) is a negative definite matrix. As a result, the zero solution of the error system

e1(k+1)=0.1e1(k)e2(k+1)=0.5e2(k),(30)

is globally asymptotically stable. According to Theorem 2, this means that the Fold map and the 3D generalized Hénon system are FM synchronized with index d = 2. Simulation results are shown in Figure 3.

The error system of the F – M synchronization with index d = 2 as a function of k
Figure 3

The error system of the FM synchronization with index d = 2 as a function of k

4.3 F – M synchronization with index d = 4

According to the definition 2.3, it is clear that the dimension d of the FM synchronization can be larger than the dimensions of both the drive system map and the response system map. In order to show this nice property, which represents a new result in the field of chaos synchronization, the value d = 4 is now chosen, i.e., a value larger than the dimensions of both the Fold map and the 3D generalized Hénon map. In particular, the FM synchronization error is now defined as:

[e1(k),e2(k),e3(k),e4(k)]T=F(y1(k),y2(k),y3(k))M[x1(k),x2(k)]T,(31)

where

F(y1(k),y2(k),y3(k))=[y1(k),y1(k)y3(k),y2(k)y3(k),y32(k)]T,(32)

M=01101321.(33)

According to the Theorem 3.3, by taking the controller U as in (14)-(15) and by selecting the diagonal matrix L3

L3=0.100000.200000.300000.4,(34)

where all the four diagonal control parameters satisfy the condition (16), the following error system is obtained:

e1(k+1)=0.1e1(k)e2(k+1)=0.2e2(k)e3(k+1)=0.3e2(k)e4(k+1)=0.4e2(k).(35)

According to Theorem 3.3, since the zero solution of system (35) is globally asymptotically stable, i.e., the Fold system and the 3D generalized Hénon map are FM synchronized with index d = 4. The results of the numerical simulations are plotted in Figure 4.

The error system of the F – M synchronization with index d = 4 as a function of k
Figure 4

The error system of the FM synchronization with index d = 4 as a function of k

5 Discussion

This section will carry out some comparisons between the proposed method and similar papers published in the literature, with the aim to highlight the differences between the available approaches. In particular, attention is focused on two interesting synchronization methods based on fuzzy rules [35,36]. For example, in [35] the author illustrates a H synchronization method based on the T–S fuzzy model and the delayed feedback control. In particular, in [35] the closed loop error system is asymptotically synchronized using an existence criterion for the controller. The approach is mainly based on the Lyapunov–Krasovskii method and on the linear matrix inequality (LMI). A similarity between the approach in [35] and the proposed one lies in the adoption of Lyapunov-based methods in order to guarantee the stability of the error system. However, a remarkable difference between the two methods is that the one in [35] has been designed for continuous-time systems, while the proposed one holds for discrete-time systems. Referring to [36], the author proposes a receding horizon control technique for achieving H synchronization in chaotic systems with external disturbance. The approach, which is based on a new set of matrix inequality conditions, is applied to synchronize the chaotic Lorenz system. Even though the method in [36] is very interesting, it has been developed for continuous-time systems, while the proposed approach has been conceived for discrete-time systems. By summarizing, we believe that the approaches in [35,36] can be considered interesting tools for synchronizing continuous-time chaotic systems, while the proposed method is valuable for synchronizing discrete-time chaotic systems with multiple choices of synchronization indices d (i.e., not only when the synchronization index d equals n or m, but even if the synchronization index d is larger than the map dimensions n and m).

Finally, we would make some comments on future developments of the present work. In particular, we are conscious that circuit implementations of synchronization schemes are an important issue. For this reason, we are currently working on the hardware implementation of the F-M synchronization method, starting from the Grassi – Miller map [37]. Namely, we would remark that a co-author (Grassi) has already implemented that map in [37], so we are preparing a forthcoming paper where all the details related to the circuit implementation of the conceived synchronization scheme will be provided.

6 Conclusion

In this paper, a new type of chaos synchronization, called FM synchronization with index d, has been proposed. The novelty relies on the fact that the approach combines two different synchronization types, the inverse generalized synchronization (based on a functional relationship F) and the matrix projective synchronization (based on a matrix M). The technique exploits nonlinear controllers and Lyapunov stability theory in order to synchronize n-dimensional drive system maps and m-dimensional response system maps. The approach has proved to be effective in achieving synchronized dynamics not only when the synchronization index d equals n or m, but even if the synchronization index d is larger than the map dimensions n and m which is an interesting result. Finally, simulation results involving the Fold map and the 3D generalized Hénon map are provided, with the aim to highlight the capabilities of the presented new scheme. As a concluding remark, we would like to highlight that the basic idea of the present paper, the combination of two different synchronization types in order to create a novel synchronization scheme, can be further generalized. This can be achieved by considering two different synchronization types as “building blocks” to obtain several new synchronization schemes using the technique developed in this paper. Consequently, the approach illustrated here can be considered as a “methodology” to create new synchronization schemes starting from two well-established synchronization types.

Acknowledgement

The authors acknowledge Prof. Guan-Rong Chen, Department of Electronic Engineering, City University of Hong Kong for suggesting many helpful references. The author Xiong Wang was supported by the National Natural Science Foundation of China (No. 61601306) and Shenzhen Overseas High Level Talent Peacock Project Fund (No. 20150215145C).

References

  • [1]

    Carroll T.L., Pecora L.M., Synchronizing chaotic circuits, IEEE Trans. Circuits Syst., 1991, 38(4), 453–456 CrossrefGoogle Scholar

  • [2]

    Wen G., Grassi G., Feng Z., Liu X.. Special issue on advances in nonlinear dynamics and control, J. Franklin Inst., 2015, 8(352), 2985–2986 Web of ScienceGoogle Scholar

  • [3]

    Brucoli M., Carnimeo L., Grassi G., A method for the synchronization of hyperchaotic circuits, Int. J. Bifurcat. Chaos, 1996, 6(09), 1673–1681 CrossrefGoogle Scholar

  • [4]

    Grassi G., Mascolo S., Synchronisation of hyperchaotic oscillators using a scalar signal, Electron. Lett., 1998, 34(5), 424–425 CrossrefGoogle Scholar

  • [5]

    Brucoli M., Cafagna D., Carnimeo L., Grassi G., Synchronization of hyperchaotic circuits via continuous feedback control with application to secure communications, Int. J. Bifurcat. Chaos, 1998, 8(10), 2031–2040 CrossrefGoogle Scholar

  • [6]

    Cafagna D., Grassi G., Observer-based projective synchronization of fractional systems via a scalar signal: application to hyperchaotic Rössler systems, Nonlinear Dyn., 2012, 68(1), 117–128 CrossrefGoogle Scholar

  • [7]

    Ouannas A., Grassi G., A new approach to study the coexistence of some synchronization types between chaotic maps with different dimensions, Nonlin. Dyn., 2016, 86(2), 1319–1328 CrossrefGoogle Scholar

  • [8]

    Ouannas A., Al-sawalha M.M., Synchronization between different dimensional chaotic systems using two scaling matrices, Optik, 2016, 127(2), 959–963 Web of ScienceCrossrefGoogle Scholar

  • [9]

    Ouannas A., Al-sawalha M.M., On λ-ϕ generalized synchronization of chaotic dynamical systems in continuous-time, Eur. Phys. J. Spec. Top., 2016, 225(1), 187–196 CrossrefGoogle Scholar

  • [10]

    Ouannas A., Azar A.T., Ziar T., On inverse full state hybrid function projective synchronization for continuous–time chaotic dynamical systems with arbitrary dimensions, Diff. Eq. Dyn. Syst., 2017, 1–14 Google Scholar

  • [11]

    Ouannas A., Azar A.T., Vaidyanathan S., New hybrid synchronisation schemes based on coexistence of various types of synchronisation between master-slave hyperchaotic systems, Int.J. Comput. App. Tech., 2017, 55(2), 112–120 CrossrefGoogle Scholar

  • [12]

    Ouannas A., A new generalized-type of synchronization for discrete-time chaotic dynamical systems, J. Comput Nonlin. Dyn., 2015, 10(6), 061019 CrossrefWeb of ScienceGoogle Scholar

  • [13]

    Ouannas A., Al-Sawalha M.M. A new approach to synchronize different dimensional chaotic maps using two scaling matrices, Nonlin. Dyn. Syst. Theory, 2015 15 400–408 Google Scholar

  • [14]

    Ouannas A., Co-existence of various types of synchronization between hyperchaotic maps, Nonlinear Dyn. Syst. Theory, 2016, 16, 312–321 Google Scholar

  • [15]

    Ouannas A., Odibat Z., Shawagfeh N., A new q–s synchronization results for discrete chaotic systems, Diff. Eq. Dyn. Syst., 2016, 1–10. Google Scholar

  • [16]

    Ouannas A., Odibat Z., Shawagfeh N., Alsaedi A., Ahmad B., Universal chaos synchronization control laws for general quadratic discrete systems, Appl. Math. Mod., 2017, 45, 636–641 CrossrefGoogle Scholar

  • [17]

    Ouannas A., Azar A.T., Abu-Saris R., A new type of hybrid synchronization between arbitrary hyperchaotic maps, Int. J. Mach. Learn. Cyb., 2016, 1–8 Google Scholar

  • [18]

    Mainieri R., Rehacek J., Projective synchronization in three-dimensional chaotic systems, Phys. Rev. Lett., 1999, 82(15), 3042 CrossrefGoogle Scholar

  • [19]

    Chee C.Y., Xu D., Control of the formation of projective synchronisation in lower-dimensional discrete-time systems, Phys. Lett. A, 2003, 318(1), 112–118 CrossrefGoogle Scholar

  • [20]

    Grassi G., Miller D.A., Arbitrary observer scaling of all chaotic drive system states via a scalar synchronizing signal, Chaos, Solitons & Fractals, 2009, 39(3), 1246–1252 Web of ScienceCrossrefGoogle Scholar

  • [21]

    Grassi G., Miller D.A., Projective synchronization via a linear observer: application to time-delay, continuous-time and discretetime systems, Int. J. Bifurcat. Chaos, 2007, 17(04), 1337–1342 CrossrefGoogle Scholar

  • [22]

    Hu M., Xu Z., Zhang R., Hu A., Parameters identification and adaptive full state hybrid projective synchronization of chaotic (hyper-chaotic) systems, Phys. Lett. A, 2007, 361(3), 231–237 CrossrefWeb of ScienceGoogle Scholar

  • [23]

    Hu M., Xu Z., Zhang R., Full state hybrid projective synchronization in continuous-time chaotic (hyperchaotic) systems, Commun. Nonlinear Sci., 2008, 13(2), 456–464 CrossrefWeb of ScienceGoogle Scholar

  • [24]

    Hu M., Xu Z., Zhang R., Full state hybrid projective synchronization of a general class of chaotic maps, Commun. Nonlinear Sci., 2008, 13(4), 782–789 CrossrefWeb of ScienceGoogle Scholar

  • [25]

    Grassi G., Miller D.A., Dead-beat full state hybrid projective synchronization for chaotic maps using a scalar synchronizing signal, Commun. Nonlinear Sci., 2012, 17(4), 1824–1830 CrossrefWeb of ScienceGoogle Scholar

  • [26]

    Hao D., Li-Xin J., Yan-Bin Z., Adaptive generalized matrix projective lag synchronization between two different complex networks with non-identical nodes and different dimensions, Chin. Phys. B, 2012, 21(12), 120508 CrossrefWeb of ScienceGoogle Scholar

  • [27]

    Wu Z., Xu X., Chen G., Fu X., Generalized matrix projective synchronization of general colored networks with differentdimensional node dynamics, J. Franklin Inst., 2014, 351(9), 4584–4595 CrossrefGoogle Scholar

  • [28]

    Ouannas A., Mahmoud E.E., Inverse matrix projective synchronization for discrete chaotic systems with different dimensions, J Comput. Intell. Electron. Syst., 2014, 3(3), 188–192 CrossrefGoogle Scholar

  • [29]

    Ouannas A., Abu-Saris R., On matrix projective synchronization and inverse matrix projective synchronization for different and identical dimensional discrete-time chaotic systems, J. Chaos 2016, 2016, 4912520 Google Scholar

  • [30]

    Ma Z.-J., Liu Z.-R., Zhang G., Generalized synchronization of discrete systems, Appl. Math. Mech., 2007, 28(5), 609–614 CrossrefGoogle Scholar

  • [31]

    Lu J., Generalized (complete, lag, anticipated) synchronization of discrete-time chaotic systems, Commun. Nonlinear Sci., 2008, 13(9), 1851–1859 Web of ScienceCrossrefGoogle Scholar

  • [32]

    Grassi G., Generalized synchronization between different chaotic maps via dead-beat control, Chin. Phys. B, 2012, 21(5), 050505 CrossrefWeb of ScienceGoogle Scholar

  • [33]

    Ouannas A., Odibat Z., On inverse generalized synchronization of continuous chaotic dynamical systems, Int. J. Appl. Comput. Math., 2016, 2(1), 1–11 CrossrefGoogle Scholar

  • [34]

    Itoh M., Yang T., Chua L.O., Conditions for impulsive synchronization of chaotic and hyperchaotic systems, Int. J. Bifurcat. Chaos, 2001, 11(02), 551–560 CrossrefGoogle Scholar

  • [35]

    Ahn C.K., T–S fuzzy H synchronization for chaotic systems via delayed output feedback control, Nonlinear Dyn., 2010, 59, 535–543 CrossrefWeb of ScienceGoogle Scholar

  • [36]

    Ahn C.K., Takagi–Sugeno fuzzy receding horizon H chaotic synchronization and its application to the Lorenz system, Nonlinear Anal. Hybri. Syst., 2013, 9, 1–8 CrossrefWeb of ScienceGoogle Scholar

  • [37]

    Grassi G., Miller D.A., Theory and Experimental realization of observer-based hyperchaos synchronization, IEEE Trans. on CAS-I, 2002, 49, 373-378 CrossrefGoogle Scholar

  • [38]

    Pecora L.M., Carroll T.L., Synchronization of chaotic circuits. Chaos, 2015, 25, 097611 Web of ScienceCrossrefGoogle Scholar

  • [39]

    Abrams D.M., Pecora L.M., Motter A.E, Introduction to focus issue - Patterns of network synchronization, Chaos, 2016, 26, 094601 Web of ScienceCrossrefGoogle Scholar

  • [40]

    Mossa Al-Sawalha M., Al-Sawalha A., Anti-synchronization of fractional order chaotic and hyperchaotic systems with fully unknown parameters using modified adaptive control, OpenPhys., 2016, 14, 304–313 Google Scholar

  • [41]

    Kocamaz U.E., Cevher B., Uyaroğlu Y., Control and synchronization of chaos with sliding mode control based on cubic reaching rule, Chaos, Solitons & Fractals, 2017, 105, 92–98 Web of ScienceCrossrefGoogle Scholar

  • [42]

    Carroll T.L., Chaos for low probability of detection communications, Chaos, Solitons & Fractals, 2017, 103, 238-245 CrossrefWeb of ScienceGoogle Scholar

  • [43]

    Petereit J., Pikovsky A., Chaos synchronization by nonlinear coupling, Commun. Nonlinear Sci. Numer. Simul., 2017, 44, 344-351 CrossrefWeb of ScienceGoogle Scholar

  • [44]

    Duan J.-S., Cheng C.-P., Chen L., A comparison study of steady-state vibrations with single fractional-order and distributed-order derivatives, Open Phys., 2017, 15, 809–818 CrossrefWeb of ScienceGoogle Scholar

  • [45]

    Egunjobi A.I., Olusola O.I., Njah A.N., Saha S., Dana S.K., Experimental evidence of chaos synchronization via cyclic coupling, Commun. Nonlinear Sci. Numer. Simul., 2018, 56, 588-595 Web of ScienceCrossrefGoogle Scholar

About the article

Received: 2017-11-21

Accepted: 2018-01-31

Published Online: 2018-04-18


Citation Information: Open Physics, Volume 16, Issue 1, Pages 174–182, ISSN (Online) 2391-5471, DOI: https://doi.org/10.1515/phys-2018-0025.

Export Citation

© 2018 A. Ouannas et al., published by De Gruyter. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Adel Ouannas, Xiong Wang, Amina-Aicha Khennaoui, Samir Bendoukha, Viet-Thanh Pham, and Fawaz Alsaadi
Entropy, 2018, Volume 20, Number 10, Page 720
[2]
Amina-Aicha Khennaoui, Adel Ouannas, Samir Bendoukha, Giuseppe Grassi, Xiong Wang, and Viet-Thanh Pham
Advances in Difference Equations, 2018, Volume 2018, Number 1
[3]
Amina-Aicha Khennaoui, Adel Ouannas, Samir Bendoukha, Xiong Wang, and Viet-Thanh Pham
Entropy, 2018, Volume 20, Number 7, Page 530

Comments (0)

Please log in or register to comment.
Log in