[1]

Ablowitz M.J., Clarkson P.A., Solitons, Nonlinear Evolution Equations and Inverse Scattering, Cambridge University Press, Cambridge, 1991 Google Scholar

[2]

Hirota R., Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons, Phys. Rev. Lett., 1971, 27, 1192-1194. CrossrefGoogle Scholar

[3]

Gu C.H., Soliton Theory and Its Application, Zhejiang Science and Technology Press, Zhejiang, 1990 Google Scholar

[4]

Matveev V.B., Salle M.A., Darboux Transformation and Soliton, Springer, Berlin, 1991 Google Scholar

[5]

Bruzón M., Recio, E., Garrido, T.M., Marquez, A.P., Conservation laws, classical symmetries and exact solutions of the generalized KdV-Burgers-Kuramoto equation, Open Phys., 2017, 15, 433-439. CrossrefWeb of ScienceGoogle Scholar

[6]

Gandarias M.L., De la Rosa, R., Rosa, M., Conservation laws for a strongly damped wave equation, Open Phys., 2017, 15, 300-305. CrossrefWeb of ScienceGoogle Scholar

[7]

Wang M., Li, X., Zhang J., The (*G*′/*G*)-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics, Phys. Lett. A, 2008, 372, 417-423. CrossrefWeb of ScienceGoogle Scholar

[8]

Mothibi D.M., Khalique, C.M., Conservation laws and exact solutions of a generalized Zakharov-Kuznetsov equation, Symmetry, 2015, 7, 949-961. CrossrefWeb of ScienceGoogle Scholar

[9]

Yan Z.Y., A reduction mKdV method with symbolic computation to construct new doubly-periodic solutions for nonlinear wave equations, Int. J. Mod. Phys. C, 2003, 14, 661-672. CrossrefGoogle Scholar

[10]

Wang M., Li X., Extended F-expansion and periodic wave solutions for the generalized Zakharov equations, Phys. Lett. A, 2005, 343, 48-54. CrossrefGoogle Scholar

[11]

Wazwaz A.M., The tanh and sine-cosine method for compact and noncompact solutions of nonlinear Klein Gordon equation, Appl. Math. Comput., 2005, 167, 1179-1195. Google Scholar

[12]

Wazwaz A.M., New solitary wave solutions to the Kuramoto-Sivashinsky and the Kawahara equations, Appl.Math. Comput., 2006, 182, 1642-1650. Google Scholar

[13]

He J., Wu X., Exp-function method for nonlinear wave equations, Chaos Solitons Fractals, 2006, 30, 700-708. CrossrefGoogle Scholar

[14]

Magalakwe G., Khalique C.M., New exact solutions for a generalized double Sinh-Gordon equation, Abstr. Appl. Anal., 2013, Article ID 268902 Web of ScienceGoogle Scholar

[15]

Yasar E., San S., Ozkan, Y.S., Nonlinear self adjointness, conservation laws and exact solutions of ill-posed Boussinesq 3equation, Open Phys., 2016, 14, 37-43. Google Scholar

[16]

Ma W.X., Huang T., Zhang Y., A multiple exp-function method for nonlinear differential equations and its applications, Phys. Scr., 2010, 82, 065003. CrossrefGoogle Scholar

[17]

Abudiab M., Khalique C.M., Exact solutions and conserva tion laws of a (3+1)-dimensional B-type Kadomtsev-Petviashvili equation, Adv. Difference Equ., 2013, 2013, 221. CrossrefGoogle Scholar

[18]

Olver P.J., Applications of Lie Groups to Differential Equations (2nd ed.), Springer-Verlag, Berlin, 1993 Google Scholar

[19]

Ibragimov N.H., CRC Handbook of Lie Group Analysis of Differential Equations, Vols 1-3, CRC Press, Boca Raton, Florida, 1994-1996 Google Scholar

[20]

Bluman G.W., Anco S.C., Symmetry and Integration Methods for Differential Methods, Springer-Verlag, New York, 2002 Google Scholar

[21]

Motsepa T., Khalique C.M., Conservation laws and solutions of a generalized coupled (2+1)-dimensional Burgers system, Comput. Math. Appl., 2017, 74, 1333-1339. Web of ScienceCrossrefGoogle Scholar

[22]

Liu Y.Q., Duan F., Hu C., Painlevé property and exact solutions to a (2+1) dimensional KdV-mKdV equation, Journal of Applied Mathematics and Physics, 2015, 3, 697-706. CrossrefGoogle Scholar

[23]

Wadati M., Wave propagation in nonlinear lattice, I. J. Phys. Soc. Jpn., 1975, 38, 673-680. CrossrefGoogle Scholar

[24]

Konno K., Ichikawa Y.H., A modified Korteweg de Vries equation for ion acoustic waves. J. Phys. Soc. Jpn.. 1974, 37, 1631-1636. CrossrefGoogle Scholar

[25]

Narayanamurti V., Varma C.M., Nonlinear propagation of heat pulses in solids, Phys. Rev. Lett., 1970, 25, 1105-1107. CrossrefGoogle Scholar

[26]

Tappert F.D., Varma C.M., Asymptotic Theory of self-trapping of heat pulses in solids, Phys. Rev. Lett., 1970, 25, 1108-1110. CrossrefGoogle Scholar

[27]

Lax P.D., Integrals of nonlinear equations of evolution and solitary waves, Commun. Pure Appl. Math., 1968, 21, 467-490. CrossrefGoogle Scholar

[28]

Benjamin T.B., The stability of solitary waves, Proc. R. Soc. Lond. A, 1972, 328, 153-183. CrossrefGoogle Scholar

[29]

Knops R.J., Stuart C.A., Quasiconvexity and uniqueness of equilibrium solutions in nonlinear elasticity, Arch. Ration. Mech. Anal., 1984, 86, 234-249. Google Scholar

[30]

Sjöberg A., Double reduction of PDEs from the association of symmetries with conservation laws with applications, Appl. Math. Comput., 2007, 184, 608-616. Web of ScienceGoogle Scholar

[31]

Muatjetjeja B., Khalique C.M., Lie group classification for a generalised coupled Lane-Emden system in dimension one, East Asian J. Appl. Math., 2014, 4, 301-311. Web of ScienceGoogle Scholar

[32]

Kudryashov N.A., Analytical Theory of Nonlinear Differential Equations, IKI, Moscow-Igevsk, 2004 Google Scholar

[33]

Anco S.C., Bluman G.W., Direct construction method for conservation laws of partial differential equations. Part I: Examples of conservation law classifications, European J. Appl. Math., 2002, 13, 545-566. Google Scholar

[34]

Bruzón M., Garrido T., De la Rosa, R., Conservation laws and exact solutions of a generalized Benjamin-Bona-Mahony-Burgers equation, Chaos Solitons Fractals, 2016, 89, 578-583. CrossrefWeb of ScienceGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.