[1]

Werndl C., What are the new implications of chaos for unpredictability?, Brit. J. Phil. Sci., 2009, 60(1), 195-220. CrossrefGoogle Scholar

[2]

Chen G., Ueta T., Chaos in circuits and systems, World Scientific, Singapore, 2002. Google Scholar

[3]

Hilborn R.C., Chaos and nonlinear dynamics: an introduction for scientists and engineers, Oxford University Press Oxford, 2000. Google Scholar

[4]

Lorenz E.N., Deterministic nonperiodic flow, J. Atmospheric Sci., 1963, 20(2), 130-141. CrossrefGoogle Scholar

[5]

Rössler O.E., An equation for continuous chaos, Phys. Lett. A, 1976, 57(5), 397-398. CrossrefGoogle Scholar

[6]

Chen G., Ueta T., Yet another chaotic attractor, Int. J. Bifurcat. Chaos, 1999, 9(07), 1465-1466. CrossrefGoogle Scholar

[7]

Sprott, J.C., Some simple chaotic flows, Phys. Rev. E, 1994, 50(2), R647. CrossrefGoogle Scholar

[8]

Jafari S., Sprott J., Golpayegani S.M.R.H., Elementary quadratic chaotic flows with no equilibria, Phys. Lett. A, 2013, 377(9), 699-702. CrossrefGoogle Scholar

[9]

Wang X., Pham V.-T., Jafari S., Volos C., Munoz-Pacheco J.M., Tlelo-Cuautle E., A new chaotic system with stable equilibrium: From theoretical model to circuit implementation, IEEE Access, 2017, 5, 8851-8858. CrossrefGoogle Scholar

[10]

Jafari S., Sprott J., Simple chaotic flows with a line equilibrium, Chaos, Solitons & Fractals, 2013, 57, 79–84. CrossrefGoogle Scholar

[11]

Jafari S., Sprott J., Erratum to:“Simple chaotic flows with a line equilibrium”[Chaos, Solitons and Fractals 57 (2013) 79-84], Chaos Solitons & Fractals, 2015, 77, 341-342. CrossrefGoogle Scholar

[12]

Pham V.-T., Jafari S., Volos C., Vaidyanathan S., Kapitaniak T., A chaotic system with infinite equilibria located on a piecewise linear curve, Optik, 2016, 127(20), 9111-9117. CrossrefGoogle Scholar

[13]

Barati K., Jafari S., Sprott J.C., Pham V.-T., Simple chaotic flows with a curve of equilibria, Int. J. Bifurcat. Chaos, 2016, 26(12), 1630034. CrossrefGoogle Scholar

[14]

Jafari S., Sprott J.C., Molaie M., A simple chaotic flow with a plane of equilibria, Int. J. Bifurcat. Chaos 26(06), 1650098 (2016). CrossrefGoogle Scholar

[15]

Sharma P.R., Shrimali M.D., Prasad A., Kuznetsov N., Leonov G., Controlling dynamics of hidden attractors, Int. J. Bifurcat. Chaos, 2015, 25(04), 1550061. CrossrefGoogle Scholar

[16]

Danca M.-F., Kuznetsov N., Hidden chaotic sets in a Hopfield neural system, Chaos, Solitons & Fractals, 2017, 103, 144-150. CrossrefGoogle Scholar

[17]

Danca M.-F., Kuznetsov N., Chen G.: Unusual dynamics and hidden attractors of the Rabinovich–Fabrikant system, Nonlinear Dyn., 2017, 88(1), 791–805. CrossrefGoogle Scholar

[18]

Kuznetsov N., Leonov G., Yuldashev M., Yuldashev R., Hidden attractors in dynamical models of phase-locked loop circuits: limitations of simulation in MATLAB and SPICE, Commun. Nonlinear Sci. Numer. Simul., 2017, 51, 39-49. CrossrefGoogle Scholar

[19]

Leonov G., Kuznetsov N., Mokaev T., Hidden attractor and homoclinic orbit in Lorenz-like system describing convective fluid motion in rotating cavity, Commun. Nonlinear Sci. Numer. Simul., 2015, 28(1), 166-174. CrossrefGoogle Scholar

[20]

Leonov G.A., Kuznetsov N.V., Mokaev T.N., Homoclinic orbits, and self-excited and hidden attractors in a Lorenz-like system describing convective fluid motion, Eur. Phys. J. Spec. Top., 2015, 224(8), 1421-1458. CrossrefGoogle Scholar

[21]

Sharma P., Shrimali M., Prasad A., Kuznetsov N., Leonov G., Control of multistability in hidden attractors, Eur. Phys. J. Spec. Top., 2015, 224(8), 1485-1491. CrossrefGoogle Scholar

[22]

Kengne J., Njitacke Z., Fotsin H., Dynamical analysis of a simple autonomous jerk system with multiple attractors, Nonlinear Dyn., 2016, 83(1-2), 751-765. CrossrefGoogle Scholar

[23]

Kengne J., Njitacke Z., Nguomkam Negou A., Fouodji Tsostop M., Fotsin, H., Coexistence of multiple attractors and crisis Route to chaos in a novel chaotic jerk circuit, Int. J. Bifurcat. Chaos, 2016, 26(05), 1650081. CrossrefGoogle Scholar

[24]

Kengne J., Tabekoueng Z.N., Fotsin H., Coexistence of multiple attractors and crisis route to chaos in autonomous third order Duffing–Holmes type chaotic oscillators, Commun. Nonlinear Sci. Numer. Simul., 2016, 36, 29-44. CrossrefGoogle Scholar

[25]

Kengne J., Negou A.N., Tchiotsop D., Antimonotonicity, chaos and multiple attractors in a novel autonomous memristor-based jerk circuit, Nonlinear Dyn., 2017, 88(4), 2589-2608 (2017). CrossrefGoogle Scholar

[26]

Fouda J.A.E., Koepf W., Jacquir S., The ordinal Kolmogorov-Sinai entropy: A generalized approximation, Commun. Nonlinear Sci. Numer. Simul., 2017, 46, 103-115. CrossrefGoogle Scholar

[27]

Baptista M., Ngamga E., Pinto P.R., Brito M., Kurths J., Kolmogorov–Sinai entropy from recurrence times, Phys. Lett. A, 2010, 374(9), 1135-1140. CrossrefGoogle Scholar

[28]

Kapitaniak T., Leonov G.A., Multistability: uncovering hidden attractors, Eur. Phys. J. Spec. Top., 2015, 224(8), 1405-1408. CrossrefGoogle Scholar

[29]

Jaros P., Kapitaniak T., Perlikowski P., Multistability in nonlinearly coupled ring of Duffing systems, Eur. Phys. J. Spec. Top., 2016, 225(13-14), 2623-2634. CrossrefGoogle Scholar

[30]

Chudzik A., Perlikowski P., Stefanski A., Kapitaniak T., Multistability and rare attractors in van der Pol–Duffing oscillator. Int. J. Bifurcat. Chaos, 2011, 21(07), 1907-1912. CrossrefGoogle Scholar

[31]

Lai Q., Chen S., Research on a new 3D autonomous chaotic system with coexisting attractors, Optik, 2016, 127(5), 3000-3004. CrossrefGoogle Scholar

[32]

Lai Q., Akgul A., Zhao X.-W., Pei H., Various types of coexisting attractors in a new 4D autonomous chaotic system. Int. J. Bifurcat. Chaos, 2017, 27(09), 1750142. CrossrefGoogle Scholar

[33]

Pan W., Li L., Degenerate Hopf bifurcation in a self-exciting Faraday disc dynamo, Pramana, 2017, 88(6), 87. CrossrefGoogle Scholar

[34]

Pisarchik A.N., Feudel U., Control of multistability. Phys. Rep., 2014, 540(4), 167-218. CrossrefGoogle Scholar

[35]

Ahn C.K., T–S fuzzy H∞ synchronization for chaotic systems via delayed output feedback control. Nonlinear Dyn., 2010, 59(4), 535-543. CrossrefGoogle Scholar

[36]

Ahn C.K., Chaos synchronization of nonlinear Bloch equations based on input-to-state stable control, Commun. Theor. Phys., 2010, 53(2), 308. CrossrefGoogle Scholar

[37]

Ahn C.K., Output feedback H∞ synchronization for delayed chaotic neural networks, Nonlinear Dyn., 2010, 59(1-2), 319. CrossrefGoogle Scholar

[38]

Ahn C.K., Neural network H∞ chaos synchronization, Nonlinear Dyn., 2010, 60(3), 295-302. CrossrefGoogle Scholar

[39]

Ahn C.K., Robust chaos synchronization using input-to-state stable control, Pramana, 2010, 74(5), 705-718. CrossrefGoogle Scholar

[40]

Ahn C.K., Jung S.-T., Kang S.-K., Joo S.-C., Adaptive H∞ synchronization for uncertain chaotic systems with external disturbance, Commun. Nonlinear Sci. Numer. Simul., 2010, 15(8), 2168-2177. CrossrefGoogle Scholar

[41]

Ahn C.K., Kim P.S., T–S fuzzy adaptive delayed feedback synchronization for time-delayed chaotic systems with uncertain parameters, Int. J. Mod. Phys. B., 2011, 25(23n24), 3253-3267. CrossrefGoogle Scholar

[42]

Ahn C.K., Takagi–Sugeno fuzzy receding horizon H∞ chaotic synchronization and its application to the Lorenz system, Nonlinear Anal. Hybrid Syst., 2013, 9, 1-8. CrossrefGoogle Scholar

[43]

Ahn C.K., An H∞ approach to anti-synchronization for chaotic systems, Phys. Lett. A, 2009, 373(20), 1729-1733. CrossrefGoogle Scholar

[44]

Volos C.K., Kyprianidis I.M., Stouboulos I.N., Image encryption process based on chaotic synchronization phenomena, Signal Process., 2013, 93(5), 1328-1340. CrossrefGoogle Scholar

[45]

Volos C., Akgul A., Pham V.-T., Stouboulos I., Kyprianidis I., A simple chaotic circuit with a hyperbolic sine function and its use in a sound encryption scheme, Nonlinear Dyn., 2017, 89(2), 1047-1061. CrossrefGoogle Scholar

[46]

Molaie M., Jafari S., Sprott J.C., Golpayegani S.M.R.H., Simple chaotic flows with one stable equilibrium, Int. J. Bifurcat. Chaos, 2013, 23(11), 1350188. CrossrefGoogle Scholar

[47]

Sprott J.C., Elegant chaos: algebraically simple chaotic flows, World Scientific, Singapore, 2010. Google Scholar

[48]

Cover T.M., Thomas J.A., Elements of information theory, 2nd ed., John Wiley & Sons, New Jersey, 2006. Google Scholar

[49]

Shannon C.E., Weaver W., The mathematical theory of communication, University of Illinois Press, USA, 1998. Google Scholar

[50]

Kolmogorov A.N., Entropy per unit time as a metric invariant of automorphisms, Dokl. Akad. Nauk SSSR, 1959, 4, 754-755. Google Scholar

[51]

Young L.-S., What are SRB measures, and which dynamical systems have them?, J. Stat. Phys., 2002, 108(5), 733-754. CrossrefGoogle Scholar

[52]

Pesin Y.B., Characteristic Lyapunov exponents and smooth ergodic theory, Russ. Math. Surv. 1977, 32(4), 55-114. CrossrefGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.