[1]

Tishin A.M., Spichkin Y.I., Themagnetocaloric effect and its application, Institute of Physics Publishing, London, 2003 Google Scholar

[2]

Liu J., Moore J. D., Skokov K. P., Krautz M., Löwe K., Barcza A., et al., Exploring La(Fe,Si)_{13}-based magnetic refrigerants towards application, Scripta Mat., 2012, 67, 584-589. CrossrefGoogle Scholar

[3]

M’nassri R., Cheikhrouhou A., Magnetocaloric effect in LaFe10.7Co0.8Si1.5 compound near room temperature, J. Supercond. Nov. Mater., 2014, 27, 1059-1064. CrossrefGoogle Scholar

[4]

Fujita A., Fujieda S., Fukamichi K., Realtive cooling power of La(Fe_{x}Si_{1−x})_{13} after controlling the Curie temperature by hydrogenation and partial substitution of Ce, J. Magn. Magn. Mat., 2007, 310, e1006-e1007. Google Scholar

[5]

Gębara P., Kovac J., Magnetocaloric effect of the LaFe_{11.2}Co_{0.7}Si_{1.1} modified by partial substitutiton of La by Pr or Ho, J. Mat. Des., 2017, 129, 111-115. Google Scholar

[6]

Yan A., Muller K.H., Gutfleisch O., Magnetocaloric effect in the LaFe_{11.8−x}Co_{x}Si_{1.2} melt-spun ribbons, J. All. Compd., 2008, 450, 18-21. CrossrefGoogle Scholar

[7]

Gębara P., Pawlik P., Hasiak M., Alteration of negative lattice expansion of the La(Fe,Si)_{13}-type phase in LaFe_{11.14−x}Co_{0.66}Ni_{x}Si_{1.2} alloys, J. Magn. Magn. Mat., 2017, 422, 61-65. CrossrefGoogle Scholar

[8]

Gębara P., Pawlik P., Michalski B., Wysłocki J.J., Measurements of magnetocaloric effect in LaFe11.14Co0.66Si1.2-xAlx (x = 0.1, 0.2, 0.3) alloys, Acta Phys. Pol. A, 2015, 127, 576-578. CrossrefGoogle Scholar

[9]

Basso V., Kuepferling M., Sasso C. P., LoBue M., Modeling hysteresis of first-order magneto-structural phase transformations, IEEE Trans. Magn., 2008, 44, 3177-3180. Web of ScienceCrossrefGoogle Scholar

[10]

Gozdur R., Chwastek K., Najgebauer M., Lebioda M., Bernacki Ł., Wodzynski A., Scaling of anhysteretic curves for LaFeCoSi alloy near the transition point, Acta Phys. Pol. A, 2017, 131, 801-803. Web of ScienceCrossrefGoogle Scholar

[11]

Mayergoyz I.D., Mathematical models of hysteresis and their applications, 2^{nd} Ed., Elsevier Academic Press, Amsterdam, 2003 Google Scholar

[12]

Jiles D.C., Atherton D.L., Theory of ferromagnetic hysteresis, J. Magn. Magn. Mater., 1986, 61, 48-60. CrossrefGoogle Scholar

[13]

Melikhov Y., Hadimani R.L., Raghunathan A., Phenomenological modelling of first order transitions in magnetic systems, J. Appl. Phys., 2014, 115, 183902 CrossrefWeb of ScienceGoogle Scholar

[14]

Steentjes S., Chwastek K., Petrun M., Dolinar D., Hameyer K., Sensitivity analysis and modeling of symmetric minor hysteresis loops using the GRUCAD description, IEEE Trans. Magn., 2014, 50, 7300804 Web of ScienceGoogle Scholar

[15]

Benabou A., Leite J. V., Clénet S., Simão C., Sadowski N., Minor loops modelling with a modified Jiles-Atherton model and comparison with the Preisach Model, J. Magn. Magn. Mater., 2008, 320, e1034-e1038. Web of ScienceGoogle Scholar

[16]

Zirka S. E., Moroz Yu. I., Harrison R. G., Chwastek K., On physical aspects of Jiles-Atherton models, J. Appl. Phys., 2012, 112, 043916 Web of ScienceCrossrefGoogle Scholar

[17]

Qingyou Liu, Xu Luo, Haiyan Zhu, Yiwei Han, Modified magnetomechanical model in the constant and low intensity magnetic field based on J-A theory, Chinese Phys. B, 2017, 26, 077502 CrossrefGoogle Scholar

[18]

Koltermann P. I., Righi L. A., Bastos J. P. A., Carlson R., Sadowski N., Batistela N. J., A modified Jiles method for hysteresis computation including minor loops, Physica B, 2000, 275, 233-237. CrossrefGoogle Scholar

[19]

Righi L. A., Sadowski N., Carlson R., Bastos J. P. A., Batistela N. J., A new approach for iron losses calculation in voltage fed time stepping Finite Elements, IEEE Trans. Magn., 2001, 37, 3353-3356. CrossrefGoogle Scholar

[20]

Bergqvist A., Magnetic vector hysteresis model with dry friction-like pinning, Physica B, 1997, 233, 342-347. CrossrefGoogle Scholar

[21]

Henrotte F., Nicolet A., Hameyer K., An energy-based vector hysteresis model for ferromagnetic materials, COMPEL, 2006, 25, 71-80. CrossrefGoogle Scholar

[22]

Tavakoli H., Bormann D., Ribberfjärd D., Engdahl G., Comparison of a simple and a detailed model of magnetic hysteresis with measurements on electrical steel, COMPEL, 2009, 28, 700-710. Web of ScienceCrossrefGoogle Scholar

[23]

François-Lavet V., Henrotte F., Stainer L., Noels L. , Geuzaine C., An energy-based variational model of ferromagnetic hysteresis for finite element computations, J. Comp. Appl. Math., 2013, 246, 243-250. CrossrefGoogle Scholar

[24]

Katter M., Zellmann V., Reppel G.W., Uestuener K., Magnetocaloric Properties of La(Fe,Co,Si)_{13} Bulk Material Prepared by Powder Metallurgy, IEEE Trans. Magn., 2008, 44, 3044-3047. Web of ScienceCrossrefGoogle Scholar

[25]

Gozdur R., Majocha A., Power losses measurements of nanocrystalline and amorphous magnetic cores, Electr. Machin. - Trans. J., 2013, 100, 175-179. Google Scholar

[26]

Gozdur R., Lebioda M., Bernacki Ł., Power losses in LaFe_{x}Co_{y}Si_{1.1} intermetallics near the magnetic phase transition, Acta Phys. Pol. A., 2015, 128, 98-103. CrossrefGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.