[1]

Adler A., Lionheart W.R.B., Uses and abuses of EIDORS: an extensible software base for EIT, Physiological Measurement, 2006, 27, 25-42. CrossrefGoogle Scholar

[2]

Beck M.S., Byars M., Dyakowski T., Waterfall R., He R., Wang S. J., Yang W.Q., Principles and Industrial Applications of Electrical Capacitance Tomography, Measur. Contr., 1997, 30(7), 197-200. CrossrefGoogle Scholar

[3]

Garbaa H., Jackowska-Strumiłło L., Grudzień K., Romanowski A., Simulation of gravitational solids flow process and its parameters estimation by the use of electrical capacitance tomography and artificial neural networks, Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska, 2016, 6(2), 34-37. CrossrefGoogle Scholar

[4]

Filipowicz S.F., Rymarczyk T., Measurement Methods and Image Reconstruction in Electrical Impedance Tomography, Przeglad Elektrotechniczny, 2012, 88(6), 247-250. Google Scholar

[5]

Rybak G., Chaniecki Z., Grudzień K., Romanowski A., Sankowski D., Non–invasive methods of industrial process control, Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska, 2014, 4(3), 41-45. Google Scholar

[6]

Rymarczyk T., Characterization of the shape of unknown objects by inverse numerical methods, Przeglad Elektrotechniczny, 2012, 88 (7B), 138-140. Google Scholar

[7]

Rymarczyk T., New Methods to Determine Moisture Areas by Electrical Impedance Tomography, International Journal of Applied Electromagnetics and Mechanics, 2016, 37(1-2), 79-87. Web of ScienceGoogle Scholar

[8]

Rymarczyk T., Adamkiewicz P., Duda K., Szumowski J., Sikora J., New Electrical Tomographic Method to Determine Dampness in Historical Buildings, Archives of Electrical Engineering, 2016, 65/2, 273-283. CrossrefWeb of ScienceGoogle Scholar

[9]

Ostrowski K.L., Luke S.P., Williams R.A., Simulation of the performance of electrical capacitance tomography for measurement of dense phase pneumatic conveying, Chem. Eng. J., 1997, 68, 197-205.CrossrefGoogle Scholar

[10]

Sankowski D., Sikora J., Electrical capacitance tomography: Theoretical basis and applications, Warsaw, IEL, 2010. Google Scholar

[11]

Ito K., Kunish K., Li Z., The Level-Set Function Approach to an Inverse Interface Problem, Inverse Problems, 2001, 17(5), 1225-1242. CrossrefGoogle Scholar

[12]

Lechleiter A., Rieder A., Newton regularizations for impedance tomography: convergence by local injectivity, Inverse Problems, 2008, 24(6), 1-24. Web of ScienceGoogle Scholar

[13]

Sbarbaro D., Vauhkonen M., Johansen T.A., State estimation and inverse problems in electrical impedance tomography: observability, convergence and regularization, Inverse Problems, 2015, 31(3): 045004. CrossrefGoogle Scholar

[14]

Soleimani M., Dorn O., Lionheart O. W., A narrow-band level set method applied to EIT in brain for cryosurgery monitoring, IEEE Transactions on Biomedical Engineering, 2006, 53(11), 2257-2264. CrossrefGoogle Scholar

[15]

Szulc K., Topological derivative – theory and applications, Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska, 2015, 5(1), 7-13. CrossrefGoogle Scholar

[16]

Abramov V., On a graded q-differential algebra, J. Nonlinear Math. Phys., 2006, 13, 1-8. CrossrefGoogle Scholar

[17]

Gola A., Świć A., Computer-Aided Machine Tool Selection for Focused Flexibility Manufacturing Systems Using Economical Criteria, Actual Problems of Economics, 2011, 124(10), 383-389. Google Scholar

[18]

Guariglia E., Entropy and Fractal Antennas, Entropy. 2016, 18(3), 1-17. Web of ScienceGoogle Scholar

[19]

Guariglia E., Spectral Analysis of the Weierstrass-Mandelbrot Function. In: Proceeding of the 2nd International Multidisciplinary Conference on Computer and Energy Science, Split, Croatia, 12-14 July 2017. Google Scholar

[20]

Guariglia E., S. Silvestrov, Fractional-Wavelet Analysis of Positive definite Distributions and Wavelets on D’(C), in Engineering Mathematics II, Silvestrov, Rancic (Eds.), Springer, 2017, 337-353. Google Scholar

[21]

Guariglia E., Fractional Derivative of the Riemann Zeta Function, in Fractional Dynamics, Cattani, Srivastava, Yang (Eds.), De Gruyter, 2015, 357-368. Google Scholar

[22]

Hexmoor H., McLaughlan B., Tuli G.: Natural human role in supervising complex control systems, Journal of Experimental & Theoretical Artificial Intelligence, 2009, 21(1), 59-77. Web of ScienceCrossrefGoogle Scholar

[23]

Kłosowski G, Kozłowski E, Gola A. Integer linear programming in optimization of waste after cutting in the furniture manufacturing. Advances in Intelligent Systems and Computing, 2018, 637, 260-270. CrossrefGoogle Scholar

[24]

Kłosowski G., Gola A., Risk-based estimation of manufacturing order costs with artificial intelligence Google Scholar

[25]

Ganzha M., Maciaszek L., Paprzycki M. (eds.), Proceedings of the 2016 Federated Conference on Computer Science and Information Systems (FEDCSIS), IEEE, 2016, 729-732, DOI: 10.15439/2016F323.Google Scholar

[26]

Mazurkiewicz D., Maintenance of belt conveyors using an expert system based on fuzzy logic. Archives of Civil and Mechanical Engineering, 2015, 15.2, 412-418. Web of ScienceGoogle Scholar

[27]

Szumowski J., Adamkiewicz P., Rymarczyk T., Electrical Capacitance Tomography to Optimize Quality Control System, International Interdisciplinary Phd Workshop, 2016, 121-124. Google Scholar

[28]

Voutilainen A., Lehikoinen A., Vauhkonen M., Kaipio J.P., Three-dimensional nonstationary electrical impedance tomography with a single electrode layer, Measurement Science and Technology, 2010, 21, 035107. Web of ScienceCrossrefGoogle Scholar

[29]

Wajman R., Fiderek P., Fidos H., Jaworski T., Nowakowski J., Sankowski D., Banasiak R., Metrological evaluation of a 3D electrical capacitance tomography measurement system for two-phase flow fraction determination, Meas. Sci. Technol., 2013, 24, 065302. Web of ScienceCrossrefGoogle Scholar

[30]

Wang M., Industrial Tomography: Systems and Applications, Elsevier, 2015. Google Scholar

[31]

Filipowicz S.F., Rymarczyk T., The Shape Reconstruction of Unknown Objects for Inverse Problems, Przeglad Elektrotechniczny, 2012, 88(3A), 55-57. Google Scholar

[32]

Holder D.S., Electrical Impedance Tomography: Methods, History and Applications, Series in Medical Physics and Biomedical Engineering, 2005. Google Scholar

[33]

Rymarczyk T., Tchórzewski P., Adamkiewicz P., Duda K., Szumowski J., Sikora J., Practical Implementation of Electrical Tomography in a Distributed System to Examine the Condition of Objects, IEEE Sensors Journal, 2017, 17(24), 8166-8186, .CrossrefWeb of ScienceGoogle Scholar

[34]

Soleimani M., Mitchell C.N., Banasiak R., Wajman R., Adler A., Four-dimensional electrical capacitance tomography imaging using experimental data, Progress In Electromagnetics Research, 2009, 90, 171-186. Web of ScienceCrossrefGoogle Scholar

[35]

Smolik W., Forward Problem Solver for Image Reconstruction by Nonlinear Optimization in Electrical Capacitance Tomography, Flow Measurement and Instrumentation, 2010, 21, 70-77. Web of ScienceCrossrefGoogle Scholar

[36]

Smolik W., Radomski D., Performance evaluation of the iterative image reconstruction algorithm with sensitivity matrix updating based on real measurements for electrical capacitance tomography, Measurement Science and Technology, 2009, 20(11), 115502. CrossrefGoogle Scholar

[37]

Polakowski K., Filipowicz S.F., Sikora J., Rymarczyk T., Quality of imaging in multipath tomography, Przeglad Elektrotechniczny, 2009, 85(12), 134-136. Google Scholar

[38]

Polakowski K., Filipowicz S.F., Sikora J., Rymarczyk T., Tomography technology application, Przeglad Elektrotechniczny, 2008, 84(12), 227-229. Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.