[1]

Temme N.M., Special Functions: An Introduction to the Classical Functions of Mathematical Physics, 2011, John Wiley and Sons, CrossrefGoogle Scholar

[2]

Vallee O., Soares M., Airy Functions and Applications to Physics, 2004, Imperial College Press Google Scholar

[3]

Temme N.M., Special Functions: An Introduction to the Classical Functions ofMathematical Physics, 1996, John Wiley and Sons Google Scholar

[4]

Emrullah Y., San S., Özkan Y.S. “Nonlinear self ad-jointness, conservation laws and exact solutions of ill-posed Boussinesq equation, Open Physics, 2016, 14(1), 37-43. Google Scholar

[5]

San S., Akbulut A., Ünsal Ö, Tascan F. Conservation laws and double reduction of (2+1) dimensional Calogero- Bogoyavlenskii-Schiff equation, Math. Meth. Appl. Sci., 2017, 40(5), 1703-1710. Google Scholar

[6]

Emrullah Y., San S., A procedure to construct conservation laws of nonlinear evolution equations, Zeitschrift für Naturforschung A, 2016, 71(5), 475-480. Google Scholar

[7]

Inc M., Aliyu A.I., Yusuf A., Dark optical, singular solitons and conservation laws to the nonlinear Schrödinger’s equation with spatio-temporal dispersion, Mod. Phys. Let. B, 2017, 31(14), 1750163 Google Scholar

[8]

Tchier F., Yusuf A., Aliyu A.I., Inc M., Soliton solutions and Conservation laws for Lossy Nonlinear Transmission line equation, Superlat. Microstr., 2017, 107, 320-336. Google Scholar

[9]

Inc M., Aliyu A.I., Yusuf A., Traveling wave solutions and conservation laws of some fifth-order nonlinear equations, Eur. Phys. J. Plus, 2017, 132, 224. Google Scholar

[10]

Bokhari A.H., Al Dweik A.Y., Kara A.H., Zaman F.D. A symmetry analysis of some classes of evolutionary nonlinear (2+1)- diffusion equations with variable diffusivity, Nonlinear Dyn., 2010, 62, 127-138. Google Scholar

[11]

Krishnan E.V., Triki H., Labidi M., Biswas A., A study of shallow waterwaveswith Gardner’s equation, Nonlinear Dyn, 2011, 66, 497-507. Google Scholar

[12]

Biswas A., Kara A.H., 1-Soliton solution and conservation laws of the generalized Dullin-Gottwald-Holm equation, Appl. Math. Comp., 2010, 217, 929-932. Google Scholar

[13]

Biswas A., Kara A.H., Moraru L., Bokhari A.H., Zaman F.D., Conservation Laws of Coupled Klein-Gordon equation with cubic and power law nonlinearities, The publishing house proceeding of the Romanian Academy, Series A, 2014, 15(2), 123-129. Google Scholar

[14]

Ebadi G., Kara A.H., Petkovic M.D., Biswas A., Soliton solutions and conservation laws of the Gilson-Pickering equation, Waves in Random and Complex Media, 2011, 21(2), 378-385. Google Scholar

[15]

Morrisa R., Kara A.H., Biswas A., Soliton solution and conservation laws of the Zakharov equation in plasmas with power law nonlinearity, Nonlinear Analysis: Modelling and Control, 2013, 18(2), 153-159. Google Scholar

[16]

Razborova P., Kara A.H., Biswas A., Additional conservation laws for Rosenau-KdV-RLW equation with power law nonlinearity by Lie symmetry, Nonlinear Dyn., 2015, 79, 743-748. Google Scholar

[17]

Noether E., Invariant variation problem, Mathematisch-Physikalische Klasse, 1918, 2, 235-257. Google Scholar

[18]

Khamitova R., Symmetries and Conservation laws, PhD thesis, 2009, Växjö, Sweden Google Scholar

[19]

Ibragimov N.H., A new Conservation laws theorem, J. Math. Anal., 2007, 333(1), 311-328. Google Scholar

[20]

Ibragimov N.H., Nonlinear self-adjointness in constructing conservation laws, Archives of ALGA, 2010, 7/4, 1-18. Google Scholar

[21]

Ibragimov N.H., Nonlinear self-adjointness in constructing conservation laws, Archives of ALGA, 2011, 44(43), 2011 Google Scholar

[22]

Ovsyannikov L.V., Group analysis of differential equations, Nuaka, Moscow, 1978, English transl., Ames W.F. (Ed.), 1982, Academic Press, New York. Google Scholar

[23]

Ovsyannikov L.V., Group properties of differential equations, 1962 Siberian Branch, USSR Academy of Sciences, Novosibirirsk, (Russian) Google Scholar

[24]

Patera J., Winternitz P., Zassenhaus H., Continuous subgroups of the fundamental groups of physics, General method and the Poincare group, J. Math. Phys., 1975, 16, 1597-1614. Google Scholar

[25]

Patera J., Sharp R.T., Winternitz P., Zassenhaus H., Invariants of real low dimension Lie algebras, J. Math. Phys., 1976,17, 986-994. Google Scholar

[26]

Galas F., Richter E.W., Exact similarity solutions of ideal MHD equations for plane motions, Phys. D, 1991, 50, 297-307. Google Scholar

[27]

Gomez C.A., Salas A., Exact solutions for the generalized shallow water wave equation by the general perspective Ricatti equations method, Math. Phys., 2006, 2006, 50-56. Google Scholar

[28]

Inc M., Ergut M., Periodic wave solutions for the generalized shallow water wave equation by the improved Jacobi elliptic function method, Appl. Math. E-Notes, 2005, 5, 89-96. Google Scholar

[29]

Elwakil S.A., El-labany S.K., Zahran M.A., Sabry R., Exact travelling wave solutions for the generalized shallow water wave equation, Chaos, Solitons & Fractals, 2003, 17(1), 121-126. Google Scholar

[30]

Bagchi B., Das S., Ganguly A., New exact solutions of a generalized shallow water wave equation, Phys. Scr., 2010, 82(2), 025003 Google Scholar

[31]

Dimas S., Tsoubelis D. SYM: A new symmetry finding pack- age for Mathematica, In: Ibragimov N.H., Sophocleous C., Damianou P.A., (Eds.), The 10th International Conference in Modern Group Analysis, 2005, 64-70, Nicosia, University of Cyprus Google Scholar

[32]

Bilby B.A., Miller K.J., Willis J.R., Fundamentals of Deformation and Fracture, 1985, Cambridge Univ. Press, Cambridge Google Scholar

[33]

Knops R.J., Stuart C.A., Quasiconvexity and uniqueness of equilibrium solutions in nonlinear elasticity, Arch. Rat. Mech. Anal., 1984, 86, 234-249. Google Scholar

[34]

Harwitt M., Photon orbital angular momentum in astrophysics, Astrophys. J., 2003, 597, 1266-1270. Google Scholar

[35]

Elias N.M., Photon orbital angular momentum in astronomy, Astron. Astrophys, 2008, 492(3), 883-922. Google Scholar

[36]

Berkhout G.C.G., Beijersbergen M.W., Method for probing the orbital angular momentumof optical vortices in electromagnetic waves from astronomical objects. Phys. Rev. Lett., 2008, 101, 100801 Google Scholar

[37]

Thidé B., Then H., Sjöholm J., Palmer K., Bergman J., Carozzi T.D., Istomin Y.N., Ibragimov N.H., Khamitova R., Utilization of photon orbital angular momentum in the low-frequency radio domain, Phys. Rev. Lett., 2007, 99, 087701-1-087701-4 Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.