[1]

Zhao C.Z., Wei S.S., Gao Y.L., Wang Y.H., Progress of Heat-Resistant Steel for Supercritical and Ultra-Supercritical Steam Turbine, J IRON STEEL RES INT., 2007, 19, 1-5.(in Chinese) Google Scholar

[2]

Mazza E., Holdsworth S.R., Skelton R.P., Characterisation of the creep-fatigue behavior of a 1CrMoV turbine steel, Mater. High Temp., 2004, 21, 119-128. CrossrefGoogle Scholar

[3]

Sugiura R., Yokobori A.T. Jr., Tabuchi M., Yokobori T., Comparison of creep crack growth rate in heat affected zone of welded joint for 9%Cr ferritic heat resistant steel based on C*, d*δ* /dt, K and Q* parameters, Eng Fract Mech., 2007, 74, 868-881. Web of ScienceCrossrefGoogle Scholar

[4]

Kwon O., Thomas C.W., Knowles D., Multiaxial stress rupture behaviour and stress-state sensitivity of creep damage distribution in Durehete 1055 and 2.25 Cr1Mo steel, Int J Pres Ves Pip., 2004, 81, 535-542. CrossrefGoogle Scholar

[5]

Webster G.A., Ainsworth R.A., High temperature component life assessment. Chapman & Hall Press, London, 1994. Google Scholar

[6]

Andersson H., Sandström R., Creep crack growth in service-exposed weld metal of 2.25 Cr1Mo, Int J Pres Ves Pip., 2001, 78, 749-755. CrossrefGoogle Scholar

[7]

Nikbin K., Smith D., Webster G., Prediction of creep crack growth from uniaxial creep data, P ROY SOC A-MATH PHY., 1984, 396, 183-197. CrossrefGoogle Scholar

[8]

Murakami S., Liu Y., Mizuno M., Computational methods for creep fracture analysis by damage mechanics, Comput Method Appl., 2000, 183, 15-33. CrossrefGoogle Scholar

[9]

Kachanov M., On the concept of damage in creep and in the brittle-elastic range, Int J Damage Mech., 1994, 3, 329. CrossrefGoogle Scholar

[10]

Webster G.A., 5.05-Creep Crack Growth, in: Milne I., Ritchie R.O., Karihaloo B. (Eds.), Comprehensive Structural Integrity, Elsevier Ltd., 2003, 241-271. Google Scholar

[11]

ASTM, ASTM E1457-07, Standard Test Method for Measurement of Creep Crack Growth Rates in Metals, ASTM International. 2007 Google Scholar

[12]

Dobrzański J., Internal damage processes in low alloy chromium-molybdenum steels during high-temperature creep service, J Mater Process Tech., 2004, 157, 297-303. Google Scholar

[13]

Joarder A., Sarma D., Cheruvu N., Effect of long-term service exposure on microstructure and mechanical properties of a CrMoV steam turbine rotor steel, Metall Mater Trans A., 1991, 22, 1811-1820. CrossrefGoogle Scholar

[14]

Cheruvu N., Degradation of mechanical properties of Cr-Mo-V and 2.25 Cr-1Mo steel components after long-term service at elevated temperatures, Metall Mater Trans A., 1989, 20, 87-97. CrossrefGoogle Scholar

[15]

Abe F., Stress to produce a minimum creep rate of 10-5%/h and stress to cause rupture at 105/h for ferritic and austenitic steels and superalloys, Int J Pres Ves Pip., 2008, 85, 99-107. CrossrefGoogle Scholar

[16]

Ennis P., Zielinska-Lipiec A., Wachter O., Czyrska-Filemonowicz A., Microstructural stability and creep rupture strength of the martensitic steel P92 for advanced power plant, Acta Mater., 1997, 45, 4901-4907. CrossrefGoogle Scholar

[17]

Sklenička V., et al., Long-term creep behavior of 9-12% Cr power plant steels, MATER CHARACT., 2003, 51, 35-48. CrossrefGoogle Scholar

[18]

Singh K., Kamaraj M., Microstructural Degradation in Power Plant Steels and Life Assessment of Power Plant Components, Procedia Engineering., 2013, 55, 394-401. CrossrefGoogle Scholar

[19]

Sklenička V., et al., The effect of hot bending and thermal ageing on creep and microstructure evolution in thick-walled P92 steel pipe, Mat Sci Eng A-Struct., 2015, 644, 297-309. Web of ScienceCrossrefGoogle Scholar

[20]

Lemaitre J., A continuous damage mechanics model for ductile fracture, J ENG MATER-T ASME., 1985, 107, 83-89. CrossrefGoogle Scholar

[21]

Hayhurst D., Hayhurst R., Vakili-Tahami F., Continuum damage mechanics predictions of creep damage initiation and growth in ferritic steel weldments in a medium bore branched pipe under constant pressure at 590^{∘} C using a five-material weld model, P Roy Soc A-Math Phy., 2005, 461, 2303-2326. CrossrefGoogle Scholar

[22]

Dewasurendra M., Vajravelu K., On the method of inverse mapping for solutions of coupled systems of nonlinear dierential equations arising in nanofluid flow, Heat and Mass Transfer, Applied Mathematics and Nonlinear Sciences. 2018, 3, 1-14. CrossrefGoogle Scholar

[23]

Khellat F., Khormizi M.B., A global solution for a reaction-diusion equation on bounded domains, Applied Mathematics and Nonlinear Sciences. 2018, 3, 15-22. CrossrefGoogle Scholar

[24]

Zhao L., Jing H.Y., Han Y.D., Xiu J.J., Xu L.Y., Prediction of creep crack growth behavior in ASME P92 steel welded joint, Comp Mater Sci., 2012, 61, 185-193. Web of ScienceCrossrefGoogle Scholar

[25]

Pettina M., Biglari F., Heaton A., Brown P., Nikbin K., Modelling damage and creep crack growth in structuralceramics at ultra-high temperatures, J Eur Ceram Soc., 2014, 34, 2799-2805. CrossrefGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.