[1]

Siddiqui M.K., Imran M., Ahmad A., On zagreb indices, zagreb polynomials of some nanostar dendrimers, Appl. Math. Comput., 2016, 280, 132-139. Google Scholar

[2]

Wiener H., Influence of interatomic forces on para–n properties, J. Chem. Phys., 1947, 15, 766-767. Google Scholar

[3]

Randic M., On characterization of molecular branching, J. Amer. Chem. Soc., 1975, 97(23), 6609-6615. Google Scholar

[4]

Furtula B., Graovac A., Vukicevic D., Atom–bond connectivity index of trees, Disc. Appl. Math., 2009, 157, 2828-2835. Google Scholar

[5]

Estrada E., Torres E., Rodriguez L., Gutman I., An atom-bond connectivity index: Modelling the enthalpy of formation of alkanes, Indian J. Chem., 1998, 37A, 849-855. Google Scholar

[6]

Ghorbani A., Hosseinzadeh M.A., Computing *ABC*_{4} index of nanostar dendrimers, Optoelectr. Adv. Mat. Rapid Comm., 2010, 4, 1419-1422. Google Scholar

[7]

Vuki*č*evi*ć* D., Furtula B., Topological index based on the ratios of geometrical and arithmetical means of end-vertex degrees of edges, J. Math. Chem., 2009, 46, 1369-1376. Google Scholar

[8]

Ghorbani A., Ghorbani M., Hosseinzadeh M.A., Computing fifth geometric–arithmetic index for nanostar dendrimers, J. Math. Nanosci., 2011, 1, 33-42. Google Scholar

[9]

Ahmad M.S., Nazeer W., Kang S.M., Imran M., Gao W., Calculating degree-based topological indices of dominating David derived networks, Open Phys., 2017, 15, 1015-1021. Google Scholar

[10]

Liu J.B., Siddiqui M.K., Zahid M.A., Naeem M., Baig A.Q., Topological Properties of Crystallographic Structure of Molecules, Symmetry, 2018, 10, 1-20. Google Scholar

[11]

Shao Z., Siddiqui M.K., Muhammad M.H., Computing Zagreb Indices and Zagreb Polynomials for Symmetrical Nanotubes, Symmetry, 2018, 10(7), 1-20. Google Scholar

[12]

Gao W., Siddiqui M.K., Imran M., Jamil M.K., Farahani M.R., Forgotten topological index of chemical structure in drugs, Saudi Pharmac. J., 2016, 24, 258-264. Google Scholar

[13]

Gao W., Siddiqui M.K., Molecular Descriptors of Nanotube, Oxide, Silicate, and Triangulene Networks, J. Chem., 2017, 6540754, 1-10. Google Scholar

[14]

Gao W., Siddiqui M.K., Naeem M., Rehman N.A., Topological Characterization of Carbon Graphite and Crystal Cubic Carbon Structures, Molecules, 2017, 22(9), 1496-1507. Google Scholar

[15]

Rostray D.H., The modeling of chemical phenomena using topological indices, J. Comp. Chem., 1987, 8, 470-480. Google Scholar

[16]

Guariglia E., Entropy and Fractal Antennas, Entropy., 2016, 18(3), 84. Google Scholar

[17]

Guariglia E., Spectral Analysis of the Weierstrass-Mandelbrot Function, IEEE Conference Proceedings, In: Proceeding of the 2^{nd} International Multidisciplinary Conference on Computer and Energy Science, Split, Croatia, 12-14, July, 2017. Google Scholar

[18]

Guariglia E., Fractional Derivative of the Riemann zeta function. In: Fractional Dynamics, Cattani C., Srivastava H., Yang X.J. (Eds.), De Gruyter, 2015, 357-368. Google Scholar

[19]

Shao Z., Wu P., Gao Y., Gutman I., Zhang X., On the maximum *ABC* index of graphs without pendent vertices, Appl. Math. Comput., 2017, 315, 298-312. Google Scholar

[20]

Shao Z., Wu P., Zhang X., Dimitrov, D., Liu, J., On the maximum *ABC* index of graphs with prescribed size and without pendent vertices, IEEE Access, 2018, 6, 27604-27616. Google Scholar

[21]

Das K.C., Gutman I., Furtula B., Survey on geometric arithmetic indices of graphs, MATCH Commun. Math. Comput. Chem., 2011, 65, 595-644. Google Scholar

[22]

Gutman I., Ruscic B., Trinajstic N., Wilcox C.F., Graph theory and molecular orbitals, XII. Acyclic polyenes, J. Chem. Phys., 1975, 62, 3399-3405. Google Scholar

[23]

Imran M., Siddiqui M.K., Naeem M., Iqbal M.A., On Topological Properties of Symmetric Chemical Structures, Symmetry., 2018, 10, 1-21. Google Scholar

[24]

Imran M., Ali M.A., Ahmad S., Siddiqui M.K., Baig A.Q., Topological Characterization of the Symmetrical Structure of Bismuth Tri-Iodide, Symmetry, 2018, 10(6), 1-20. Google Scholar

[25]

Gutman I., Trinajstc N., Graph theory and molecular orbitals., Total *π*-electron energy of alternant hydrocarbons, Chem. Phys. Lett.., 1972, 17, 535-538. Google Scholar

[26]

Diudea M.V., Distance counting in tubes and tori: Wiener index and Hosoya polynomial, In: Nanostructures-NovelArchitecture, NOVA, New York, 2005, 203-242. Google Scholar

[27]

Stefu M., Diudea M.V., Wiener Index of *C*_{4}*C*_{8} Nanotubes, MATCH Comm. Math. Comp. Chem., 2004, 50, 133-144. Google Scholar

[28]

Siddiqui M.K., Naeem M., Rahman N.A., Imran M., Computing topological indices of certain networks, J. Optoelctr. Adv. Material., 2016, 18(9), 884-892. Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.