[1]

Wang Y., Chen K.S., Mishler J., Cho S.C., Adroher X.C., A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research, Appl. Energy, 2011, 88, 981–1007. Google Scholar

[2]

Wilberforce T., Alaswad A., Palumbo A., Dassisti M., Olabi A.G., Advances in stationary and portable fuel cell applications, Int. J. Hydrogen Energy, 2016, 41, 16509–16522. Google Scholar

[3]

Kim B., Cha D., Kim Y., The effects of air stoichiometry and air excess ratio on the transient response of a PEMFC under load change conditions, Appl. Energy, 2015, 138, 143–149. Google Scholar

[4]

Oh S.T., Saha B.B., Kariya K., Hamamoto Y., Mori H., Fuel cell waste heat powered adsorption cooling systems, Int. J. Air-Cond. Refrig., 2013, 21, 1350010. Google Scholar

[5]

Cheng S., Xu L., Li J., Fang C., Hu J., Ouyang M., Development of a PEM fuel cell city bus with a hierarchical control system, Energies, 2016, 9, 417–435. Google Scholar

[6]

Jeon S.W., Cha D., Kim H.S., Kim Y., Analysis of the system effciency of an intermediate temperature proton exchange membrane fuel cell at elevated temperature and relative humidity conditions, Appl. Energy, 2016, 166, 165–173. Google Scholar

[7]

Rojas A.C., Lopez G.L., Gomez-Aguilar J.F., Alvarado V.M., Torres C.L.S., Control of the air supply subsystem in a PEMFC with balance of plant simulation, Sustain., 2017, 9, 1–23. Google Scholar

[8]

Wood D.L., Yi J.S., Nguyen T.V., Effect of direct liquid water injection and interdigitated flow field on the performance of proton exchange membrane fuel cells, Electrochim. Acta., 1998, 43, 3795–3809. Google Scholar

[9]

Casalegno A., De Antonellis S., Colombo L., Rinaldi F., Design of an innovative enthalpy wheel based humidification system for polymer electrolyte fuel cell, Int. J. Hydrogen Energy, 2011, 36, 5000–5009. Google Scholar

[10]

Huizing R., Fowler M., Mérida W., Dean J., Design methodology for membrane-based plate-and-frame fuel cell humidifiers, J. Power Sources, 2008, 180, 265–275. Google Scholar

[11]

Kancsár J., Striednig M., Aldrian D., Trattner A., Klell M., Kügele C., et al., A novel approach for dynamic gas conditioning for PEMFC stack testing, Int. J. Hydrogen Energy, 2017, 42, 28898–28909. Google Scholar

[12]

Chen X., Li W., Gong G., Wan Z., Tu Z., Parametric analysis and optimization of PEMFC system for maximum power and effciency using MOEA/D, Appl. Therm. Eng., 2017, 121, 400–409. Google Scholar

[13]

Chen C.Y., Yan W.M., Lai C.N., Su J.H., Heat and mass transfer of a planar membrane humidifier for proton exchange membrane fuel cell, Int. J. Heat Mass Transf., 2017, 109, 601–608. Google Scholar

[14]

Chen X., Zhou H., LiW., Yu Z., Gong G., Yan Y., et al., Multi-criteria assessment and optimization study on 5 kW PEMFC based residential CCHP system, Energy Convers. Manage., 2018, 160, 384–395. Google Scholar

[15]

Bhatia D., Sabharwal M., Duelk C., Analytical model of a membrane humidifier for polymer electrolyte membrane fuel cell systems, Int. J. Heat Mass Transf., 2013, 58, 702–717. Google Scholar

[16]

Baharlou H.N., Afshari E., Three-dimensional CFD modeling of a planar membrane humidifier for PEM fuel cell systems, Int. J. Hydrogen Energy, 2014, 39, 14969–14979. Google Scholar

[17]

Park S.K., Choe S.Y., Choi S.H., Dynamic modeling and analysis of a shell-and-tube type gas-to-gas membrane humidifier for PEM fuel cell applications, Int. J. Hydrogen Energy, 2008, 33, 2273–2282. Google Scholar

[18]

Kang S., Min K., Yu S., Two dimensional dynamic modeling of a shell-and-tube water-to-gas membrane humidifier for proton exchange membrane fuel cell, Int. J. Hydrogen Energy, 2010, 35, 1727–1741. Google Scholar

[19]

Zhang L.Z., Niu J.L., Effectiveness correlations for heat and moisture transfer processes in an enthalpy exchanger with membrane cores, J. Heat Transfer, 2002, 124, 922–929. Google Scholar

[20]

Min J.C., Su M., Wang L.N., Experimental and theoretical investigations of membrane-based energy recovery ventilator performance, Int. J. Air-Cond. Refrig., 2012, 20, 1150004. Google Scholar

[21]

Lee E.J., Lee J.P., Sim H.M., Kim N.H., Modeling and verification of heat and moisture transfer in an enthalpy exchanger made of paper membrane, Int. J. Air-Cond. Refrig., 2012, 20, 1250015. Google Scholar

[22]

Kim N.H., Effect of the channel height of the enthalpy exchanger on energy saving by enthalpy recovery ventilator, Int. J. Air-Cond. Refrig., 2016, 24, 1650020. Google Scholar

[23]

Kadylak D., Cave P., Mérida W., Effectiveness correlations for heat and mass transfer in membrane humidifiers, Int. J. Heat Mass Transf., 2009, 52, 1504–1509. Google Scholar

[24]

Kadylak D., Mérida W., Experimental verification of a membrane humidifier model based on the effectiveness method, J. Power Sources, 2010, 195, 3166–3175. Google Scholar

[25]

Yu S., Im S., Kim S., Hwang J., Lee Y., Kang S., et al., A parametric study of the performance of a planar membrane humidifier with a heat and mass exchanger model for design optimization, Int. J. Heat Mass Transf., 2011, 54, 1344–1351. Google Scholar

[26]

Ahluwalia R.K., Wang X., Johnson W.B., Berg F., Kadylak D., Performance of a cross-flow humidifier with a high flux water vapor transport membrane, J. Power Sources, 2015, 291, 225–238. Google Scholar

[27]

Han J., Yu S., Yi S., Advanced thermal management of automotive fuel cells using a model reference adaptive control algorithm. J. Hydrogen Energy, 2017, 42, 4328–4341. Google Scholar

[28]

Incropera F., Dewitt D., Fundamental of heat and mass transfer, New York: John Wiley and Sons, 2002. Google Scholar

[29]

Zhang L., Conjugate heat and mass transfer in heat mass exchanger ducts, Elsevier Science and Technology, 2013. Google Scholar

[30]

Motupally S., Becker A.J., Weidner J.W., Diffusion of Water in Nafion 115 Membranes, J. Electrochem. Soc., 2000, 147, 3171–3177. Google Scholar

[31]

Flatau P.J., Walko R.L., Cotton W.R., Polynomial fits to saturation vapor pressure, J. Appl. Meteorol., 1992, 31, 1507–1513. Google Scholar

[32]

Bao C., Ouyang M., Yi B., Modeling and optimization of the air system in polymer exchange membrane fuel cell systems, J. Power Sources, 2006, 156, 232–243. Google Scholar

[33]

James L., Dicks A., Fuel cell systems explained, John Wiley and Sons, 2003. Google Scholar

[34]

Duy V.N., Lee J., Kim K., Ahn J., Park S., Kim T., et al., Dynamic simulations of under-rib convection-driven flow-field configurations and comparison with experiment in polymer electrolyte membrane fuel cells, J. Power Sources, 2015, 293, 447–457. Google Scholar

[35]

Shah A.A., Ralph T.R., Walsh F.C., Modeling and simulation of the degradation of perfluorinated ion-exchange membranes in PEM fuel cells, J. Electrochem. Soc., 2009, 156, B465–B484. Google Scholar

[36]

Shabalin I.L., Ultra-high temperature materials I: carbon (graphene/graphite) and refractory metals, Springer, 2014. Google Scholar

[37]

Kanani H., Shams M., Hasheminasab M., Bozorgnezhad A., Model development and optimization of operating conditions to maximize PEMFC performance by response surface methodology, Energy Convers. Manag., 2015, 93, 9–22. Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.