[1]

Zhang Z.-K., Liu Ch. et al., Dynamics of information diffusion and its applicationson complex networks, Phys. Rep., 2016, 651, 1-34. Google Scholar

[2]

Iribarren J.L., Moro E., Impact of human activity patternson the dynamics of information diffusion, Phys. Rev. Lett., 2009, 103, 3, 038702. Google Scholar

[3]

Fischer E., Reuber A.R., Social interaction vianew social media:(How) can interactions on Twitter affect effectualthinking and behavior?, J. Bus. Venturing., 2011, 26, 1, 1-18. Google Scholar

[4]

Ruiz C.V., Aiello L.M., Jaimes A., Modeling dynamics of attention in social media with user efficiency, EPJ.Data. Sci., 2014, 3, 1, 5-20. Google Scholar

[5]

Pronovost G., Social Time, Curr. Sociol., 1989, 37, 3, 1-98. Google Scholar

[6]

Ratkiewicz J. et al., Characterizing and modeling the dynamics of online popularity, Phys.Rev.Lett., 2010, 105, 15, 158701. Google Scholar

[7]

Guille A. et al., Information diffusion in online social networks: A survey, ACM. Sigmod. Rec., 2013, 42, 2, 17-28. Google Scholar

[8]

Honey C., Herring S.C., Beyond microblogging: Conversation and collaboration via Twitter Honey, Proc. Int. Conf. System Sciences IEEE (2009, Washington, DC, USA), 1-10. Google Scholar

[9]

Saito K. et al., Learning diffusion probability based on node attributes in social networks,In Proc. Int. Symp. Methodologies for Intelligent Systems (2011,Warsaw, Poland), 153-162. Google Scholar

[10]

Yang Z. et al., Understanding retweeting behaviors in social networks, In Proc. 19th ACM Int. Conf. on Information and knowledge management (2010, Toronto, Canada), 1633-1636. Google Scholar

[11]

Macskassy S.A, Michelson M. Why do People Retweet? Anti-Homophily Wins the Day!, Int. Conf. on Weblogs and Social Media, Barcelona, Catalonia, Spain, July. DBLP, 2011. Google Scholar

[12]

Gonçalves B., Perra N., Vespignani A., Modeling users’ activity on twitter networks: Validation of dunbar’s number, PloS one, 2011, 6, 8, e22656. Google Scholar

[13]

Barabási A., The origin of bursts and heavy tails in human dynamics, Nature, 2005,435,7039, 207-212. Google Scholar

[14]

Castellano C., Fortunato S., Loreto V., Statistical physics of social dynamics, Rev.Mod.phys, 2007, 81,2, 591-646. Google Scholar

[15]

Holme P., Saramäki J., Temporal networks,Phys.Rep..,2012, 519, 3, 97-125. Google Scholar

[16]

Stehlé J., Barrat A,. Bianconi G., Dynamical and bursty interactions in social networks, Phys. Rev. E, 2010, 81 ,3, 035101. Google Scholar

[17]

Zhao K. et al., Social network dynamics of face-to-face interactions, Phys. Rev. E , 2011, 83, 5, 056109. Google Scholar

[18]

Rodriguez G., Leskovec M.J., Schölkopf B., Structure and dynamics of information pathways in online media, Proc. 6th ACM Int. Conf. on Web search and data mining, 2013, New York, USA, 23-32. Google Scholar

[19]

Liljeros F., Edling C. R., Lan A.,The web of human sexual contacts, Nature, 2001, 411, 6840, 907-908. Google Scholar

[20]

Miritello G., Rubén L., Moro E., Time allocation in social networks: correlation between social structure and human communication dynamics, Temporal networks, 2013, Springer Berlin Heidelberg, 175-190. Google Scholar

[21]

Vázquez A. et al., Modeling bursts and heavy tails in human dynamics, Phys. Rev. E, 2006, 73, 3, 036127. Google Scholar

[22]

Karsai M. et al., Small but slow world: How network topology and burstiness slow down spreading, Phys. Rev. E, 2011, 83, 2, 025102. Google Scholar

[23]

Wu S. et al., Who says what to whom on twitter, Proc. 20th Int. Conf. on World wide web (2011, Hyderabad, India), 705-714. Google Scholar

[24]

Weng L., et al., Competition among memes in a world with limited attention, Sci.Rep., 2012, 2, 335-344. Google Scholar

[25]

Tuljapurkar S., Infectious diseases of humans: Dynamics and control, Science, 1991, 254, 5031, 591-593. Google Scholar

[26]

Perra N. et al., Activity driven modeling of time varying networks, Sci. Rep., 2012, 2, 469-475. Google Scholar

[27]

Wang L.Z., Huang Z.G., Rong Z.H., Wang X.F., Lai Y.C., Emergence, evolution and scaling of online social networks, Plos One, 2014, 9, 11, e111013. Google Scholar

[28]

Guille A., Hacid H., A predictive model for the temporal dynamics of information diffusion in online social networks, Proc. 21st Int. Conf. on World Wide Web (2012, Lyon, France), 1145-1152. Google Scholar

[29]

Leskovec J., Krevl A., Large Network Dataset Collection, http://snap.stanford.edu/data June 2014.

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.