[1]

Gao W., Siddiqui M.K., Imran M., Jamil M.K., Farahani M.R., Forgotten topological index of chemical structure in drugs, Saudi Pharm J., 2016, 24(3), 258-264. CrossrefWeb of ScienceGoogle Scholar

[2]

Gao W., Farahani M.R., Shi L., Forgotten topological index of some drug structures, Acta Medica Mediterranea, 2016, 32, 579-585. Google Scholar

[3]

Gao W., Wang Y., Wang W., Shi L., The first multiplication atom-bond connectivity index of molecular structures in drugs, Saudi Pharm. J., 2017, 25(4), 548-555. CrossrefWeb of ScienceGoogle Scholar

[4]

Gao W., Wang Y., Basavanagoud B., Jamil M.K., Characteristics studies of molecular structures in drugs, Saudi Pharm. J., 2017, 25(4), 580-586. Web of ScienceCrossrefGoogle Scholar

[5]

Munir M., Nazeer W., Nizami A.R., Rafique S., Kang S.M., M-polynomials and topological indices of titania nanotubes, Symmetry, 2016, 8(11), 117. Web of ScienceCrossrefGoogle Scholar

[6]

Munir M., Nazeer W., Rafique S., Kang S.M., M-polynomial and degree-based topological indices of polyhex nanotubes, Symmetry, 2016, 8(12), 149.CrossrefWeb of ScienceGoogle Scholar

[7]

Ajmal M., Kang S.M., Nazeer W., Munir M., Jung C.Y., Some Topological Invariants of the Möbius Ladders, Global J. Pure Appl. Math., 2016, 12(6), 5317-5327.Google Scholar

[8]

Munir M., Nazeer W., Rafique S., Nizami A.R., Kang S M., Some Computational Aspects of Boron Triangular Nanotubes, Symmetry, 2017, 9(1), 6. CrossrefWeb of ScienceGoogle Scholar

[9]

Gao W., Younas M., Adeel M., Virk A.R., Nazeer W., Some Reverse Degree-Based Topological Indices and Polynomials of Dendrimers, Mathematics, 2018, *6*(10), 214. CrossrefWeb of ScienceGoogle Scholar

[10]

Gao W., Younas M., Farooq A., Mahboob A., Nazeer W., M-Polynomials and Degree-Based Topological Indices of the Crystallographic Structure of Molecules, Biomolecules, 2018, 8(4), 107. CrossrefWeb of ScienceGoogle Scholar

[11]

Huang,Y., Liu B., Gan L., Augmented Zagreb index of connected graphs, MATCH Commun. Math. Comput. Chem., 2012, 67(2), 483-494. Google Scholar

[12]

Nazeer W., Farooq A., Younas M.,Munir M., Kang S., On Molecular Descriptors of Carbon Nanocones. Biomolecules, 2018, 8(3), 92. Web of ScienceCrossrefGoogle Scholar

[13]

Gutman I., Trinajstić N., Graph theory andmolecular orbitals. Total *φ*-electron energy of alternant hydrocarbons, Chem. Phys. Lett., 1972, 17(4), 535-538. CrossrefGoogle Scholar

[14]

Gutman I., Randić B., Trinajstić N., Wilcox Jr C.F., Graph theory and molecular orbitals. XII. Acyclic polyenes, J. Chem. Phys., 1975, 62(9), 3399-3405. Google Scholar

[15]

Balaban A.T., Motoc I., Bonchev D., Mekenyan O., Topological indices for structure-activity correlations, In: Steric effects in drug design, 1983, 21-55, Springer, Berlin, Heidelberg. Google Scholar

[16]

Das K.C., Gutman I., Some properties of the second Zagreb index, MATCH Commun. Math. Comput. Chem., 2004, 52(1), 3-1. Google Scholar

[17]

Gutman I., Das K.C., The first Zagreb index 30 years after, MATCH Commun. Math. Comput. Chem., 2004, 50(1), 83-92. Google Scholar

[18]

Nikolić S., Kovačević G., Miličević A., Trinajstić N., The Zagreb indices 30 years after, Croatica Chemical Acta, 2003, 76(2), 113-124. Google Scholar

[19]

Zhou B., Remarks on Zagreb indices, MATCH Commun. Math. Comput. Chem., 2007, 57, 591-596. Google Scholar

[20]

Das K. C., Sharp bounds for the sum of the squares of the degrees of a graph, Kragujevac J. Math., 2003, 25(25), 19-41. Google Scholar

[21]

Došlic T., Furtula B., Graovac A., Gutman I., Moradi S., Yarahmadi Z., On vertex–degree–based molecular structure descriptors, MATCH Commun. Math. Comput. Chem., 2011, 66(2), 613-626. Google Scholar

[22]

Fath-Tabar G.H., Old and new Zagreb indices of graphs, MATCH Commun. Math. Comput. Chem., 2011, 65(1), 79-84. Google Scholar

[23]

Hansen P., Mélot H., Gutman I., Variable neighborhood search for extremal graphs 12: a note on the variance of bounded degrees in graphs, Grouped’étudeset de recherche en analyse des decisions., 2004 HEC Montréal. Google Scholar

[24]

Liu B., Gutman I., Upper bounds for Zagreb indices of connected graphs, MATCH Commun. Math. Comput. Chem., 2006, 55, 439-446. Google Scholar

[25]

Zhang S., Zhang H., Unicyclic graphs with the first three smallest and largest first general Zagreb index, MATCH Commun. Math. Comput. Chem., 2006, 55(20), 06. Google Scholar

[26]

Zhou B., Zagreb indices, MATCH-Communications in Mathematical and in Computer Chemistry., 2004, (52), 113-118. Google Scholar

[27]

Zhou B., Remarks on Zagreb indices, MATCH Commun. Math. Comput. Chem., 2007, 57, 591-596. Google Scholar

[28]

Zhou B., Gutman I., Further properties of Zagreb indices, MATCH Commun. Math. Comput. Chem., 2005, 54, 233-239. Google Scholar

[29]

Fath-Tabar G.H., Zagreb Polynomial and Pi Indices of some Nano Structures, Digest J. Nanomat. Biostr., 2009, 4(1), 189-191. Google Scholar

[30]

Bindusree A.R., Cangul I.N., Lokesha V., Cevik A.S., Zagreb polynomials of three graph operators, Filomat, 2016, 30(7), 1979-1986. CrossrefWeb of ScienceGoogle Scholar

[31]

Albertson M.O., The irregularity of a graph, Ars Combinatoria, 46, 219-225. Google Scholar

[32]

Zhou B., Luo W., On irregularity of graphs, Ars Combinatoria, 2008, 88, 55-64. Google Scholar

[33]

Luo W., Zhou B., On the irregularity of trees and unicyclic graphs with given matching number, Utilitas Math., 2010, 83, 141-147. Google Scholar

[34]

Bindusree A.R., Cangul I.N., Lokesha V., Cevik A.S., Zagreb polynomials of three graph operators, Filomat., 2016, 30(7), 1979-1986. CrossrefWeb of ScienceGoogle Scholar

[35]

Alaeiyan M., Farahani M.R., Jamil M.K., Computation of the fifth geometric-arithmetic index for polycyclic aromatic hydrocarbons PAH_{k} Appl. Math. Nonlin. Sci., 2016, 1(1), 283-290. Google Scholar

[36]

Jamil M.K., Farahani M.R., Imran M., Malik M.A., Computing eccentric version of second zagreb index of polycyclic aromatic hydrocarbons PAH_{k} Appl. Math. Nonlin. Sci., 2016, 1(1), 247-252. Google Scholar

[37]

Farahani M.R., Jamil M.K., Imran M., Vertex PIv topological index of titania carbon nanotubes TiO2(m, n), Appl.Math. Nonlin. Sci., 2016, 1(1), 175-182. Google Scholar

[38]

Gao W., Zali M.R., Degree-based indices computation for special chemical molecular structures using edge dividing method, Appl. Math. Nonlin. Sci., 2016, 1(1), 94-117. Google Scholar

[39]

Basavanagoud B., Gao W., Patil S., Desai V.R., Mirajkar K.G., Balani P., Computing First Zagreb index and F-index of New C-products of Graphs, Appl. Math. Nonlin. Sci., 2017, 2(1), 285-298. Google Scholar

[40]

Lokesha V., Deepika T., Ranjini P.S., Cangul I.N., Operations of Nanostructures via SDD, ABC4 and GA5 indices, Appl. Math. Nonlin. Sci., 2017, 2(1), 173-180. Google Scholar

[41]

Hosamani S.M., Kulkarni B.B., Boli R.G., Gadag V.M., QSPR analysis of certain graph theocratical matrices and their corresponding energy, Appl. Math. Nonlin. Sci., 2017, 2(1), 131-150. Google Scholar

[42]

Sardar M.S., Zafar S., Zahid Z., Computing topological indices of the line graphs of Banana tree graph and Firecracker graph, Appl. Math. Nonlin. Sci., 2017, 2(1), 83-92. Google Scholar

[43]

Basavanagoud B., Desai V.R., Patil S., *β* *α*- Connectivity Index of Graphs, Appl. Math. Nonlin. Sci., 2017, 2(1), 21-30. Google Scholar

[44]

Ramane H.S., Jummannaver R.B., Note on forgotten topological index of chemical structure in drugs, Appl. Math. Nonlin. Sci., 2016, 1(2), 369-374. Google Scholar

[45]

Ali A., Nazeer W., Munir M., Kang S.M., M-Polynomials And Topological Indices Of Zigzag And Rhombic Benzenoid Systems, Open Chemistry, 2018, 16(1), 73-78. Web of ScienceCrossrefGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.