[1]

Gazizov R.K., Ibragimov N.H., Lie symmetry analysis of differential equations in finance, Nonlinear Dynam., 1998, 17(4), 387-407. CrossrefGoogle Scholar

[2]

Tamizhmani K.M., Krishnakumar K., Leach P.G.L., Algebraic resolution of equations of the Black–Scholes type with arbitrary time-dependent parameters, Appl. Math. Comput., 2014, 247, 115-124. Web of ScienceGoogle Scholar

[3]

Motsepa T., Aziz T., Fatima A., Khalique C.M., Algebraic aspects of evolution partial differential equation arising in the study of constant elasticity of variance model from financial mathematics, Open Phys., 2018, 16, 31-36. CrossrefWeb of ScienceGoogle Scholar

[4]

Motsepa T., Khalique C.M., Molati M., Group classification of a general bond-option pricing equation of mathematical finance, Abstract Appl. Anal., 2014, Volume 2014, Article ID 709871, 10 pages. Web of ScienceGoogle Scholar

[5]

Lo C.F., Hui C.H., Valuation of financial derivatives with time-dependent parameters, Quant. Fin., 2001, 1, 73-78. CrossrefGoogle Scholar

[6]

Sinkala W., On the generation of arbitrage-free stock price models using Lie symmetry analysis, Comput. Math. Appl., 2016, 72, 1386-1393. CrossrefWeb of ScienceGoogle Scholar

[7]

Pooe C.A., Mahomed F.M., Wafo Soh C., Fundamental solutions for zero-coupon bond pricing models, Nonlinear Dynam., 2004, 36, 69-76. CrossrefGoogle Scholar

[8]

Basov S., Lie groups of PDEs and their application to the multidimensional screening problems, in: Econometric Society 2004 Australasian Meetings, vol. 44, (2004). Google Scholar

[9]

Liu Y.,Wang D.S., Symmetry analysis of the option pricing model with dividend yield from financial market, App. Math. Lett., 2011, 24, 481-486. CrossrefGoogle Scholar

[10]

Wang Z., Wang L., Wang D.S., Jin Y., Optimal system, symmetry reductions and new closed form solutions for the geometric average Asian options, Appl. Math. Comput., 2014, 226, 598-605. Web of ScienceGoogle Scholar

[11]

Davison A.H., Mamba S., Symmetry methods for option pricing, Commun. Nonlinear Sci. Numer. Simulat., 2017, 47, 421-425. CrossrefGoogle Scholar

[12]

Dimas S., Andriopoulos K., Tsoubelis D., Leach P.G.L., Complete specification of some PDEs that arise in financial mathematics, J. Nonlinear Math. Phys., 2009, 16, 73-92. CrossrefGoogle Scholar

[13]

Naicker V., Andriopoulos K., Leach P.G.L., Symmetry reductions of a Hamilton–Jacobi–Bellman equation arising in financial mathematics, J. Nonlinear Math. Phys., 2005, 12(2), 268-283. CrossrefGoogle Scholar

[14]

Polidoro S., A nonlinear PDE in Mathematical Finance, in: F. Brezzi, A. Buffa, S. Corsaro, A. Murli (Eds.), Numerical Mathematics and Advanced Application, Springer, 2003. Google Scholar

[15]

Sinkala W., Leach P.G.L., O’Hara J.G., An optimal system and group-invariant solutions of the Cox–Ingersoll–Ross pricing equation, Appl. Math. Comput., 2008, 201, 95-107. Web of ScienceGoogle Scholar

[16]

Zhou S., Xiao L., An Application of symmetry approach to finance: Gauge symmetry in finance, Symmetry., 2010, 2(4), 1763-1775. Google Scholar

[17]

Bordag L.A., Yamshchikov I.P., Optimization problem for a portfolio with an illiquid asset: Lie group analysis, J. Math. Anal. Appl., 2017, 453, 668-699. Google Scholar

[18]

Bachelier L., Theorie de la speculation, Annales Scientifiques de l’Ecole Normale Superieure., 1900, 3, 21-86. Google Scholar

[19]

Merton R.C., Optimum consumption and portfolio rules in a continuous time model, J. Economic Thr., 1971, 3(4), 373-413. Google Scholar

[20]

Black F., Scholes M., The pricing of options and corporate liabilities, J. Political Eco., 1973, 81, 637-654. Google Scholar

[21]

Vasicek O., An equilibrium characterization of the term structure, J. Financial Eco., 1977, 5, 177-188. Google Scholar

[22]

Black F., Karasinski P., Bond and option pricing when short rates are lognormal, Financial Analysts J., 1991, 47, 52-59. CrossrefGoogle Scholar

[23]

Heath D., Jarrow R., Morton A., Bond pricing and the term structure of interest rates: a new methodology for contingent claims valuation, Econometrica, 1992, 60, 77-105. Google Scholar

[24]

Cox J.C., Ingersoll J.E., Ross S.A., An intertemporal general equilibriummodel of asset prices, Econometrica, 1985, 53, 363-384. Google Scholar

[25]

Brennan M.J., Schwartz E.S., Analyzing convertible bonds, J. Financial Quantitative Anal., 1980, 15, 907-929. CrossrefGoogle Scholar

[26]

Dothan L., On the term structure of interest rates, J. Financial Econ., 1978, 6, 59-69. Google Scholar

[27]

Johnpillai I.K., Mahomed F.M., Singular invariant equation for the (1+1) Fokker- Planck equation, J. Physics A: Mathematical and General, 2001, 34, 11033-11051. Google Scholar

[28]

Mahomed F.M., Complete invariant characterization of scalar linear (1+1) parabolic equations, J. Nonlinear Math. Phys., 2008, 15, 112-123. Google Scholar

[29]

Sinkala W., Leach P.G.L., O’Hara J.G., Invariance properties of a general bond-pricing equation, J. Differential Equ., 2008, 244, 2820-2835. Web of ScienceCrossrefGoogle Scholar

[30]

Olver P.J., Applications of Lie Groups to Differential Equations, Graduate Texts in Mathematics, Vol. 107, Springer-Verlag, New York, 1993.Google Scholar

[31]

Lie S., On integration of a class of linear partial differential equations by means of definite integrals, Archiv for Mathematik og Naturvidenskab, [in German], Reprinted in S. Lie,Gesammelte Abhadlundgen, 3 paper XXXV, 1881, 3, 328-368. Google Scholar

[32]

Myint-U T.Y.N., Partial Differential Equations of Mathematical Physics, Amercian Elsevier Publishing Company, INC. New York, 1973. Google Scholar

[33]

Polyanin A.D., Zaitsev V.F., Handbook of Exact Solutions for Ordinary Differential Equations, CRC Press, Boca Raton, FL, 1995. Google Scholar

[34]

Abramowitz M., Stegun I.A., Handbook of Mathematical Functions, New York, 1965. Google Scholar

[35]

Kallianpur G., Karandikar R.L., Introduction to option pricing theory. Boston: Birkhäuser, 2000. Google Scholar

[36]

Hadamard J., Lectures on Cauchy’s Problem in Linear Partial Differential Equations, Yale University Press, New Haven, Connecticut, 1923.Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.