[1]

Esekon J.E., The Black-Scholes formula and the Greek parameters for a nonlinear Black-Scholes equation, Int. J. Pure Appl. Math., 2012, 76(2), 167-171 Google Scholar

[2]

Kiptum P.J., Esekon J.E., Oduor O.M., Greek parameters of nonlinear Black-Scholes equation, Int. J. Math. Soft Comput., 2015, 5(2), 69-74 Google Scholar

[3]

Rogers L.C.G., Shi Z., The value of an Asian option, J. Appl. Probability, 1995, 32, 1077-1088 Google Scholar

[4]

Elshegmania Z.A., Ahmad R.R., Solving an Asian option PDE via the Laplace transform, Science Asia, 2013, 39S, 67–69 Google Scholar

[5]

Falloon W., Turner D., The evolution of a market, In: Managing energy price risk, 1999, Risk Books, London, UK Google Scholar

[6]

Edeki S.O., Owoloko E.A., Ugbebor O.O., The modified Black- Scholes model via constant elasticity of variance for stock options valuation, 2015 Progress in Applied Mathematics in Science and Engineering (PIAMSE), AIP Conference Proceedings, 2016, 1705, 4940289 Google Scholar

[7]

Shokrollahi F., The evaluation of geometric Asian power options under time changed mixed fractional Brownian motion, J. Comp. Appl. Math., 2018, 344, 716- 724 Google Scholar

[8]

Kemna A.G.Z., Vorst A.C.F., A pricing method for options based on average asset values, J. Banking and Finance, 1990, 14, 113-129 Google Scholar

[9]

Edeki S.O., Ugbebor O.O., Owoloko E.A., On a dividend-paying stock options pricing model (SOPM) using constant elasticity of variance stochastic dynamics, Int. J. Pure Appl. Math., 2016, 106 (4), 1029-1036 Google Scholar

[10]

Corsaro S., Kyriakou I., Marazzina D., Marino, Z., A general framework for pricing Asian options under stochastic volatility on parallel architectures, Europ. J. Operat. Res., 2019, 272 (3), 1082-1095 CrossrefGoogle Scholar

[11]

Barucci E., Polidoro S., Vespri V., Some results on partial differential equations and Asian options, Math. Models Methods Appl. Sci. 2001, 11 (3), 475-497 CrossrefGoogle Scholar

[12]

Geman H., Yor M., Bessel process, Asian options and perpetuities, Math. Finance 1993, 3 (4), 349-75 Google Scholar

[13]

Vecer J., A new PDE approach for pricing arithmetic average Asian option, J. Comput. Finance, 2001, 4, 105-113 Google Scholar

[14]

Zhang J., Theory of continuously-sampled Asian option pricing, (working paper), 2000, City University of Hong Kong Google Scholar

[15]

Chen K., Lyuu Y., Accurate pricing formula for Asian options, J. Appl. Math. Comp., 2007, 188, 1711-1724 Google Scholar

[16]

Elshegmani Z.A., Ahmad R.R., Zakaria R.H., New pricing formula for arithmetic Asian options using PDE Approach, Appl. Math. Sci, 2011, 5, 77, 3801–3809 Google Scholar

[17]

Kumar A., Waikos A., Chakrabarty S.P., Pricing of average strike Asian call option using numerical PDE methods, 2011, arXiv:1106.1999v1 [q-fin.CP] Google Scholar

[18]

Zhang B., Yu Y.,Wang W., Numerical algorithm for delta of Asian option, Sci. World J., 2015, 692847

[19]

Fadugba S.E., ThevMellin transformvmethod as an alternative analytic solution for the valuation of geometric Asian option, Appl. Comput. Math., 2014, 3, (6-1), 1-7 Google Scholar

[20]

Elshegmani Z.A., Ahmad R.R., Analytical Solution for an arithmetic Asian option using mellin transforms, Int. J. Math. Analysis, 2011, 5 (26), 1259-1265 Google Scholar

[21]

Edeki S.O., Ugbebor O.O., Owoloko E.A., Analytical solution of the time-fractional order Black-Scholes model for stock option valuation on no dividend yield basis, IAENG Int. J. Appl. Math., 2017, 47 (4), 407-416 Google Scholar

[22]

Edeki S.O., Ugbebor O.O., Owoloko E.A. , He’s polynomials for analytical solutions of the Black-Scholes Pricing Model for Stock Option Valuation, Lecture Notes Eng. Comp. Sci., 2016, 2224, 632-634 Google Scholar

[23]

Oghonyon J.G., Omoregbe N.A., Bishop S.A., Implementing an order six implicit block multistep method for third order ODEs using variable step size approach, Global J. Pure Appl. Math., 2016, 12 (2), 1635-1646 Google Scholar

[24]

Akinlabi G.O., Edeki S.O., The solution of initial-value wavelike models via perturbation iteration transform method, Lecture Notes Eng. Comp. Sci., 2017, 2228, 1015-1018 Google Scholar

[25]

Biazar J., Goldoust F., The Adomian decomposition method for the Black-Scholes equation, 3rd Int. Conf. on Appl. Math. Pharmaceutical Sci., Singapore, 2013, 321-323 Google Scholar

[26]

Elshegmani Z.A., Ahmed R.R., Analytical solution for an arithmetic Asian option using mellin transforms, Int. J. Math. Analysis, 2011, 5 (26), 1259-1265 Google Scholar

[27]

Akinlabi G.O., Edeki S.O., On approximate and closed-form solution method for initial-value wave-like models, International, J. Pure Appl. Math., 2016, 107 (2), 449-456 Google Scholar

[28]

Edeki S.O., Akinlabi G.O., Odo C.E., Fractional complex transform for the solution of time-fractional advection-diffusion model, Int. J. Circuits, Systems and Signal Processing, 2017, 11, 425-432 Google Scholar

[29]

Agarana M.C., Ede A.N., Application of differential transform method to vibration analysis of damped railway bridge on pasternak foundation under moving train, Lecture Notes Eng. Comp. Sci., 2016, 2224, 1177-1179 Google Scholar

[30]

Edeki S.O., Akinlabi G.O., Nyamoradi N., Local fractional operator for analytical solutions of the K(2, 2)-focusing branch equations of time-fractional order, Int. J. Appl. Comput. Math, 2018, 4, 66 Google Scholar

[31]

Guo Y., Globally robust stability analysis for stochastic Cohen-Grossberg neural networks with impulse control and time- varying delays, Ukrainian Math. J., 2018, 69 (8), 1220-1233 Google Scholar

[32]

Moussi A., Lidouh A., Nqi F.Z., Estimators of sensitivities of an Asian option: numerical analysis, Int. J. Math. Analysis, 2014, 8 (17), 813-827 Google Scholar

[33]

Guo Y., Mean square exponential stability of stochastic delay cellular neural networks, Electron. J. Qual. Theory Differ. Equ., 2013, 34, 1-10 Google Scholar

[34]

Edeki S.O., Adeosun M.E., Owoloko E.A., Akinlabi G.O., Adinya I., Parameter estimation of local volatility in currency option valuation, Int. Rev. Model. Simul., 2016, 9(2), 130-133 Google Scholar

[35]

Guo Y., Mean square global asymptotic stability of stochastic recurrent neural networks with distributed delays, Appl. Math. Comp., 2009, 215, 791-795 Google Scholar

[36]

Aimi A., Guardasoni C., Collocation boundary element method for the pricing of Geometric Asian options, Engineering Analysis with Boundary Elements, 2018, 92, 90-100 Google Scholar

[37]

Khuri S.A., A Laplace decomposition algorithm applied to a class of nonlinear differential equations, J. Appl. Math, 2001, 1 (4), 141-155 Google Scholar

[38]

Fadaei J., Application of Laplace-Adomian decomposition method on linear and nonlinear system of PDEs, Appl. Math. Sci., 2011, 5 (27), 1307-1315 Google Scholar

[39]

Pue-on P., Laplace Adomian Decomposition Method for Solving Newell-Whitehead-Segel Equation, Appl. Math. Sci., 2013, 7 (132), 6593-6600 Google Scholar

[40]

Yousef H.M.,Md Ismail A.I.B.M., Application of the Laplace Adomian decomposition method for solution system of delay differential equations with initial value problem, AIP Conf. Proc., 2018, 1974, 020038 CrossrefGoogle Scholar

[41]

Haq F. Shah , Ur Rahman G., Shahzad M., Numerical solution of fractional order smoking model via Laplace Adomian decomposition method, Alexandria Eng. J., 2018, 57 (2), 1061-1069 CrossrefWeb of ScienceGoogle Scholar

[42]

Mishra V., Rani D., Newton-Raphson based modified Laplace Adomian decomposition method for solving quadratic Riccati differential equations, MATEC Web of Conferences, 2016, 57, 05001 CrossrefGoogle Scholar

[43]

Singh R., Saha J., Kumar J., Adomian decomposition method for solving fragmentation and aggregation population balance equations, J. Appl. Math. Comput., 2015, 48, (1–2), 265-292 Google Scholar

[44]

Matinfar M., Ghanbari M., The application of the modified variational iteration method on the generalized Fisher’s equation, J. Appl. Math. Comput., 2009, 31, (1-2), 165-175 Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.