[1]

Sharma G., Narula A.K., Eu^{3+} Yb^{3+} and Eu^{3+} -Yb^{3+} Complexes with Salicylic Acid and 1,10-Phenanthroline, Synthesis, Photo-luminescent Properties and Energy Transfer, J. Fluorescence, 2015, 25(2), 355-360. CrossrefGoogle Scholar

[2]

Li Y., Liu T., Ye S. Tailored upconversion emission of Eu in SrCa(W,Mo)O , Yb, Eu by a laser an electronic polarization mechanism, J. Mat. Chem. C, 2015, 3(19), 4997-5003. CrossrefGoogle Scholar

[3]

Sharma K.G., Singh N.R., Synthesis and luminescence properties of CaMO4, Dy^{3+} (M = W, Mo) nanoparticles prepared via an ethylene glycol route, New J. Chem., 2013, 37(9), 2784-2791. CrossrefWeb of ScienceGoogle Scholar

[4]

Guo J., Zhou D., Wang L. Infrared spectra, Raman spectra, microwave dielectric properties and simulation for effective permittivity of temperature stable ceramics AMoO_{4}-TiO_{2} (A=Ca, Sr)., Dalton Transactions, 2013, 42(5), 1483-91. CrossrefGoogle Scholar

[5]

Ilhan S., Kalpakli A.O., Kahruman C. The investigation of dissolution behavior of gangue materials during the dissolution of scheelite concentrate in oxalic acid solution, Hydrometallurgy, 2013, 136(4), 15-26. Web of ScienceCrossrefGoogle Scholar

[6]

Goel A., Mccloy J.S., Jr C.F.W. Structure of Rhenium-Containing Sodium Borosilicate Glass, International Journal of Applied Glass Science, 2013, 4(1), 42-52. CrossrefWeb of ScienceGoogle Scholar

[7]

Kang F., Peng M., Yang X. Broadly tuning Bi^{3+} emission via crystal field modulation in solid solution compounds (Y,Lu,Sc)VO4, Bi for ultraviolet converted white LEDs, J. Mat. Chem. C, 2014, 2(30), 6068-6076. CrossrefGoogle Scholar

[8]

Ansari A.A., Parchur A.K., Alam M. Influence of Surface Coating on Structural and Photoluminescent Properties of CaMoO 4, Pr Nanoparticles, J. Fluorescence, 2014, 24(4), 1253-1262. CrossrefGoogle Scholar

[9]

Chen Y., Park S.W., Moon B.K. Effect of sodium citrate on the shape and photoluminescence properties of CaWO4, Eu3+ superstructures synthesized by the hydrothermal method, Crystengcomm, 2013, 15(41), 8255-8261. Web of ScienceCrossrefGoogle Scholar

[10]

Chouard N., Caurant D., Majérus O. Effect of MoO_{3} Nd2O_{3} and RuO_{2} on the crystallization of soda–lime aluminoborosilicate glasses, J. Mat. Sci., 2015, 50(1), 219-241. CrossrefGoogle Scholar

[11]

Saraf R., Shivakumara C., Dhananjaya N. Photoluminescence properties of Eu^{3+} activated CaMoO_{4} phosphors for WLEDs applications and its Judd–Ofelt analysis, J. Mat. Sci., 2015, 50(1), 287-298. CrossrefGoogle Scholar

[12]

Wang M., Chen Z., Chen D. Structural, elastic and thermodynamic properties of A15-type compounds V3X (X = Ir, Pt and Au) from first-principles calculations, Modern Phys. Lett. B, 2016, 30(35), 1650414 Web of ScienceCrossrefGoogle Scholar

[13]

Guo Z.C., Luo F., Cheng Y., Phase transition and thermodynamic properties of beryllium from first-principles calculations, Comp. Mat. Sci., 2014, 84(1), 139-144. CrossrefGoogle Scholar

[14]

Liu S., Zhan Y., Insight into structural, mechanical and thermodynamic properties of zirconium boride from first-principles calculations, Comp. Mat. Sci., 2015, 103, 111-115. CrossrefGoogle Scholar

[15]

Niu Z.W., Cheng Y., Zhang H.Y. First-Principles Investigations on Structural, Phonon, and Thermodynamic Properties of Cubic $$\text {CeO_{2$$ CeO 2, Int. J. Thermophys., 2014, 35(8), 1601-1612. CrossrefGoogle Scholar

[16]

Tao X., Zhu J., Guo H. Phase stability, thermodynamic and mechanical properties of AlZr 2, FeZr 2, and Al 2 FeZr 6, from first-principles calculations, J. Nucl. Mat., 2013, 440(1-3), 6-10. CrossrefGoogle Scholar

[17]

Pu C.Y., Wang L., Lin-Xia L. Pressure-induced structural transition and thermodynamic properties of NbSi_2 from first-principles calculations, Acta Physica Sinica, 2015, 64(8), 1-2. Google Scholar

[18]

Yang T., Liu D., Ji J. First-principles calculations for transition phase, mechanical and thermodynamic properties of ZnS under extreme condition, Int. J. Modern Phys. B, 2017, 31(5), 1750028 Web of ScienceCrossrefGoogle Scholar

[19]

Pu C., Zhou D., Song Y. Phase transition and thermodynamic properties of YAg alloy from first-principles calculations, Comp. Mat. Sci., 2015, 102(8), 21-26. CrossrefGoogle Scholar

[20]

Zhang X., Zhao X., Zheng B. et al.. First-Principles Study of Thermodynamical and Elastic Properties of *η′* -(Cu,Co) 6 Sn 5, Ternary Alloys, J. Electr. Mat., 2016, 45(10), 4919-4927. CrossrefGoogle Scholar

[21]

Yan H.Y., Zhang M.G., Huang D.H. First-principles study of elastic and thermodynamic properties oforthorhombic OsB 4, under high pressure, Solid State Sci., 2013, 18(22), 17-23. CrossrefGoogle Scholar

[22]

Yuan J., Yu N., Xue K. Stability, electronic and thermodynamic properties of aluminene from first-principles calculations, Appl. Surf. Sci., 2017, 409, 85-90. Web of ScienceCrossrefGoogle Scholar

[23]

Zhang B., Investigations of the magnetic, mechanical and thermodynamic properties of cubic phase LaMO3 (M=Ti~Fe), Phil. Mag. Lett., 2017, 97(5), 169-179. Web of ScienceCrossrefGoogle Scholar

[24]

Xu C., Li Q., Liu C.M. Structural stabilities, elastic and electronic properties of chromium tetraboride from first-principles calculations, Int. J. Modern Phys. B, 2016, 30(17), 1650098. CrossrefWeb of ScienceGoogle Scholar

[25]

Planas M.I.G, Klymchuk T., Perturbation analysis of a matrix differential equation x=ABx, Appl. Math. Nonlinear Sci., 2018, 3, 97-104.CrossrefGoogle Scholar

[26]

Baig A.Q., Naeem M., Gao W., Revan and hyper-Revan indices of Octahedral and icosahedral networks, Appl. Math. Nonlinear Sci., 2018, 3(1), 33-40.CrossrefGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.