[1]

Goenner H.F., On the history of unified field theories, Living Reviews in Relativity, 2004, 7, 1830-1923. Web of ScienceGoogle Scholar

[2]

Witten L., Geometry of gravitation and electromagnetism, Phys. Rev., 1959, 115, 206-214. CrossrefGoogle Scholar

[3]

Borchsenius K., Unified theory of gravitation, electromagnetism, and the yang-mills field, Phys. Rev. D, 1976, 13, 2707-2712. CrossrefGoogle Scholar

[4]

Ferraris M., Kijowski J., Unified geometric theory of electromagnetic and gravitational interactions, General Relat. Gravit., 1982, 14, 37-47. Google Scholar

[5]

Vargas J. G., On the geometrization of electrodynamics, Found. Phys., 1991, 21, 379-401. Google Scholar

[6]

Popławski N.J., Geometrization of electromagnetism in tetrad-spin gravity, Modern Phys. Let. A, 2009, 24, 431-442. Google Scholar

[7]

Popławski N.J., Torsion as electromagnetism and spin, International J. Theor. Phys., 2010, 49, 1481-1488. CrossrefGoogle Scholar

[8]

Giglio J.F.T., Rodrigues Jr W.A., Gravitation and electromagnetism as geometrical objects of a riemann-cartan spacetime structure, Adv. Appl. Clifford Algebras, 2012, 22, 649-664. CrossrefGoogle Scholar

[9]

Shahverdiyev S.S., General geometry and geometry of electromagnetism, 2002, arXiv preprint hep-th/0205224. Google Scholar

[10]

Olkhov O.A., New approach to geometrization of electromagnetic field, Amer. J. Phys. Appl., 2015, 3, 221-225. Google Scholar

[11]

Duarte C.A., The classical geometrization of the electromagnetism, Int. J. Geom. Meth. Modern Phys., 2015, 12, 1560022. Google Scholar

[12]

Synge J.L., Timelike helices in flat space-time, Proc. Royal Irish Acad., 1966, 65, 27-42. Google Scholar

[13]

Honig E., Schucking E.L., Vishveshwara C.V., Motion of charged particles in homogeneous electromagnetic fields, J. Math. Phys., 1974, 15, 774-781. CrossrefGoogle Scholar

[14]

Caltenco J.H., Linares y M., Lopez-Bonilla J.L., Intrinsic geometry of curves and the lorentz equation, Czechoslovak J. Phys., 2002, 52, 839-842. CrossrefGoogle Scholar

[15]

Formiga J.B., Romero C., On the differential geometry of time-like curves in minkowski spacetime, Amer. J. Phys., 2006, 74, 1012-1016. Google Scholar

[16]

Misner C.W., Thorne K.S., Wheeler, J.A., 1973, San Francisco, W.H. Freeman and Co.

[17]

Ni W.T., Zimmermann M., Inertial and gravitational effects in the proper reference frame of an accelerated, rotating observer, Phys. Rev. D, 1978, 17, 1473-1476. Google Scholar

[18]

Nelson R.A., Generalized lorentz transformation for an accel- erated, rotating frame of reference, J. Math. Phys., 1987, 28, 2379-2383. CrossrefGoogle Scholar

[19]

Aldrovandi R., Barros P., Pereira J., The equivalence principle revisited, 2003, Found. Phys., 33, 545-575. CrossrefGoogle Scholar

[20]

Mei T., A new variable in general relativity and its applications for classic and quantum gravity, 2006, arXiv preprint grqc/0611063.

[21]

De Felice F., Clarke C.J., Relativity on curved manifolds, Cambridge University Press, 1992. Google Scholar

[22]

Carroll S.M., Lecture notes on general relativity, 1997, arXiv preprint gr-qc/9712019. Google Scholar

[23]

Ellis G.F.R., Matravers D.R., General covariance in general relativity? General Relat. Gravit., 1995, 27, 777-788. CrossrefGoogle Scholar

[24]

Zalaletdinov R., Tavakol R., Ellis G.F.R., On general and restricted covariance in general relativity, General Relat. Gravit., 1996, 28, 1251-1267. Google Scholar

[25]

Gron O., Voyenli K., On the foundation of the principle of relativity, Foundations of Physics, 1999, 29, 1695-1733. CrossrefGoogle Scholar

[26]

Brown H.R., Physical relativity: Space-time structure from a dynamical perspective, 2005, Oxford University Press on Demand. Google Scholar

[27]

Westman H., Sonego S., Events and observables in generally invariant spacetime theories, Found. Phys., 2008, 38, 908-915. CrossrefWeb of ScienceGoogle Scholar

[28]

Chamorro A., On the meaning of the principle of general covariance, Int. J. Theor. Phys., 2013, 52, 117-129. CrossrefGoogle Scholar

[29]

Pauli W., Theory of relativity, 1958, Courier Dover Publications. Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.