[1]

Fetecau C., Vieru D., Fetecau C. and Akhter S. General solutions for the magneto-hydrodynamic natural convection flow with radiative heat transfer and slip conditions over a moving plate, Z. Natur-forsch., 2013, 68a, 659-667. Google Scholar

[2]

Mehmood O., Fetecau C. A note on radiative heat transfer to peristaltic flow of Sisko fluid, Appl. Bionics Biomech., 2015, 283892. Google Scholar

[3]

Sheikholeslami M., Hatami M., Ganji D.D., Micropolar fluid flow and heat transfer in a permeable channel using analytical method, J. Mol. Liquids., 2014, 194, 30-36. CrossrefGoogle Scholar

[4]

Sheikholeslami M., Ashorynejad H.R., Ganji D.D., Rashidi M.M., Heat and mass transfer of amicropolar fluid in a porous channel, Comm. Numer. Anal., 2014, 00166. Google Scholar

[5]

Ellahi R., Ariel P.D., Hayat T., Asghar S., Effects of heat transfer on a third-grade fluid in a flat channel, Int. J. Numer. Meth. Fluids., 2010, 63, 847-850. Google Scholar

[6]

Ellahi R., The effects of MHD and temperature dependent viscosity on the flow of non-Newtonian nanofluid in a pipe: Analytical solutions, App. Math. Mod., 2013, 37, 1451-1467.CrossrefGoogle Scholar

[7]

Ad esanya S. O., Falade J. A., Thermodynamics analysis of hydromagnetic third grade fluidflow through channel filled with porous medium. Alex. Eng. J., 2015, 54, 615-622. CrossrefGoogle Scholar

[8]

Turkyilmazoglu M., Dual and triple solutions for MHD slip flow of non-Newtonian fluid over a shrinking surface, Comp. Fluids., 2012, 70, 53-58. CrossrefGoogle Scholar

[9]

Raza J, Rohni A. M., Omar Z., Awais M., Heat and mass transfer analysis of MHD Nanofluid flow in a rotating channel with slip effects, J. Mol. Liq., 2016, 219, 703-708. CrossrefGoogle Scholar

[10]

Freidoonimehr N., Rashidi M. M., Mahmud S., Unsteady MHD free convective flow past a permeable stretching vertical surface in a nano-fluid, Int. J. Therm. Sci., 2015, 87, 136-145. CrossrefGoogle Scholar

[11]

Rashidi M.M., Rostami B., Freidoonimehr N., Abbasbandy S., Free convection heat and mass transfer for MHD fluid flow over a permeable veritical stretching sheet in the presence of radiation andbuoyancy effects, Ain Shams Eng. J., 2014, 6, 901-912. Google Scholar

[12]

Rashidi M.M., Ali M., Freidoonimehr N., Rostami B., Hossain M.A., Mixed convective heat trans-fer for MHD viscoelastic fluid flow over a porous wedge with thermal radiation, Adv. Mech. Eng., 2014, 735939. Google Scholar

[13]

Rashidi M. M., Momoniat E., Rostami B., Analytic approximate solutions for MHD boundary-layer viscoelastic fluid flow over continuously moving stretching surface by homotopy analysis method with two auxiliary parameters, J. Appl. Math., 2012, 780415. Google Scholar

[14]

Iqbal Z., Qasim M., Awais M., Hayat T., Asghar S., Stagnation-point flow by an exponentially stretching sheet in the presence of viscous dissipation and thermal radiation, J. Aerospace Eng., 2015, 29(2). Google Scholar

[15]

Awais M., Hayat T., Nawaz M., Alsaedi A., Newtonian heating, thermal-diffusion and diffusion-thermo effects in an axisymmetric flow of a Jeffery fluid over a stretching surface, Braz. J. Chem. Eng., 2015, 32, 555-561. CrossrefGoogle Scholar

[16]

Ahmadi M. H., Ahmadi M. A., Pourfayaz F., Hosseinzade H., Acıkkalp E., Tlili I., Michel F., Designing a powered combined Otto and Stirling cycle power plant through multi-objective optimization approach, Renew. Sustain. Ener. Rev., 2016, 62, 585-595. CrossrefGoogle Scholar

[17]

Tlili I., Timoumi Y., Ben Nasrallah S., Numerical simulation and losses analysis in a Stirling engine, Int. J. Heat Technol., 2006, 24, 1. Google Scholar

[18]

Tlili I., Timoumi Y, Ben Nasrallah S., Thermodynamic analysis of Stirling heat engine with regenerative losses and internal irreversibilities, Int. J. Engine Res., 2007, 9, 45-56. Google Scholar

[19]

Timoumi Y., Tlili I., Ben Nasrallah S., Performance optimization of Stirling engines Renew. Ener., 2008, 2134-2144. Google Scholar

[20]

Tlili I., Renewable energy in Saudi Arabia: current status and future potentials, Environment, development and sustainability, 2015, 17(4), 859-886. Google Scholar

[21]

Sa’ed A., Tlili I., Numerical Investigation of Working Fluid Effect on Stirling Engine Performance, Int. J. Therm. Envir. Eng., 2015, 10(1), 31-36. Google Scholar

[22]

Tlili I., Finite time thermodynamic evaluation of endoreversible Stirling heat engine at maximum power conditions, Renew. Sustain. Ener. Rev., 2012, 16(4), 2234-2241. CrossrefGoogle Scholar

[23]

Tlili I., Thermodynamic Study on Optimal Solar Stirling Engine Cycle Taking Into Account The Irreversibilities Effects, Ener. Proc., 2012, 14, 584-591. CrossrefGoogle Scholar

[24]

Tlili I., A numerical investigation of an alpha Stirling engine, Int. J. Heat Technol., 2012, 30(1), 23-35. Google Scholar

[25]

Tlili I., Musmar S.A., Thermodynamic evaluation of a second order simulation for Yoke Ross Stirling engine, Ener. Conv. Manag., 2013, 68, 149-160. CrossrefGoogle Scholar

[26]

Tlili I., Timoumi Y., Nasrallah S.B., Analysis and design consideration of mean temperature differential Stirling engine for solar application, Renew. Ener., 2008, 33, 1911-1921. CrossrefGoogle Scholar

[27]

Timoumi Y., Tlili I., Nasrallah S.B., Design and performance optimization of GPU-3 Stirling engines, Energy, 2008, 33, 1100-1114. CrossrefGoogle Scholar

[28]

Timoumi Y., Tlili I., Nasrallah S. B., Reduction of energy losses in a Stirling engine, Heat Technol., 2007, 25, 1, 84-93. Google Scholar

[29]

Al-Qawasmi A. R., Tlili I., Energy Efficiency Audit Based on Wireless Sensor and Actor Networks: Air-Conditioning Investigation, J. Eng., 2018, 2, 3640821. Google Scholar

[30]

Al-Qawasmi A.R., Tlili I., Energy efficiency and economic impact investigations for air-conditioners using wireless sensing and actuator networks, Ener. Rep., 2018, 4, 478-485. CrossrefGoogle Scholar

[31]

Khan M.N., Khan W., Tlili I., Forced Convection of Nanofluid Flow Across Horizontal Elliptical Cylinder with Constant Heat Flux Boundary Condition, J. Nanofluids, 2019, 8(2), 1-8. Google Scholar

[32]

Tlili I., Khan W., Ramadan K., MHD Flow of Nanofluid Flow Across Horizontal Circular Cylinder: Steady Forced Convection, J. Nanofluids, 2019, 8(1), 179-186. CrossrefGoogle Scholar

[33]

Afridi M.I., Tlili I., Qasim M., Khan I., Nonlinear Rosseland thermal radiation and energy dissipation effects on entropy generation in CNTs suspended nanofluids flow over a thin needle, Bound. Value Probl. 2018, 148. Google Scholar

[34]

Almutairi M.M., Osman M., Tlili I., Thermal Behavior of Auxetic Honeycomb Structure: An Experimental and Modeling Investigation, ASME. J. Ener. Res. Technol., 2018, 140(12), 122904-122908. CrossrefGoogle Scholar

[35]

Zhixiong L., Khan I., Shafee A., Tlili I., Asifa T., Energy transfer of Jeffery-Hamel nanofluid flow between non-parallel walls using Maxwell-Garnetts (MG) and Brinkman models, Ener. Rep., 2018, 4, 393-399. CrossrefGoogle Scholar

[36]

M.N. Khan, Tlili I., Innovative thermodynamic parametric investigation of gas and steam bottoming cycles with heat exchanger and heat recovery steamgenerator: Energy and exergy analysis, Ener. Rep., 2018, 4, 497-506. CrossrefGoogle Scholar

[37]

Ali F., Aamina, Khan I., Sheikh N.A., Gohar M., Tlili I., Effects of Different Shaped Nanoparticles on the Performance of Engine-Oil and Kerosene-Oil: A generalized Brinkman-Type Fluid model with Non-Singular Kernel, Sci. Rep., 2018, 8, 15285. CrossrefGoogle Scholar

[38]

Ghadikolaei S.S., Hosseinzadeh K., Ganji D.D., Jafari B., Nonlinear thermal radiation effect on magne to Casson nanofluid flow with Joule heating effect over an inclined porous stretching sheet, Case Studies Therm. Eng., 2018, 12, 176-187. CrossrefGoogle Scholar

[39]

Hosseinzadeh K., Afsharpanah F., Zamani S., Gholinia M., Ganji D.D., A numerical investigation on ethylene glycol-titanium dioxide nanofluid convective flow over a stretching sheet in presence of heat generation/absorption, Case Studies Therm. Eng., 2018, 12, 228-236. CrossrefGoogle Scholar

[40]

Rahmati A.R., Akbari O.A., Marzban A., Toghraie D., Karimi R., Pourfattah F., Simultaneous investigations the effects of non-Newtonian nanofluid flow in different volume fractions of solid nanoparticles with slip and no-slip boundary conditions, Therm. Sci. Eng. Prog., 2018, 5, 263-277. CrossrefGoogle Scholar

[41]

Ghadikolaei S.S., Hosseinzadeh K., Yassaria M., Sadeghia H., Ganjib D.D., Analytical and numerical solution of non-Newtonian second-grade fluid flow on a stretching sheet, Therm. Sci. Eng. Prog., 2018, 5, 308-316. Google Scholar

[42]

Sheikholeslami M., Darzi M., Sadoughi M.K., Heat transfer improvement and pressure drop during condensation of refrigerant-based nanofluid; an experimental procedure, Int. J. Heat Mass Transf., 2018, 122, 643-650. CrossrefGoogle Scholar

[43]

Guo W., Li G., Zheng Y., Dong C., Numerical study of nanofluids thermal and hydraulic characteristics considering Brownian motion effect in micro fin heat sink, J. Mol. Liq., 2018, 254, 446-462. Google Scholar

[44]

Amini Y., Takahashi A., Chantrenne P., Maruyama S., Dancette S., Maire E., Thermal conductivity of highly porous metal foams: Experimental and image based finite element analysis., Int. J. Heat Mass Transf., 2018,122, 1-10. CrossrefGoogle Scholar

[45]

Tian J.H., Jiang K., Heat conduction investigation of the functionally graded materials plates with variable gradient parameters under exponential heat source load, Int. J. Heat Mass Transf., 2018, 122, 22-30. CrossrefGoogle Scholar

[46]

Tlili I., Khan W., Ramadan K., Entropy Generation Due to MHD Stagnation Point Flow of a Nanofluid on a Stretching Surface in the Presence of Radiation, J. Nanofluids, 2018, 7(5), 879-890. CrossrefGoogle Scholar

[47]

Asif M., Haq S., Islam S., Khan S., Tlili I., Exact solution of non-Newtonian fluid motion between side walls, Res. Phys., 2018, 11, 534-539. Google Scholar

[48]

Agaie B.G., Khan I., Yacoob Z., Tlili I., A novel technique of reduce order modelling without static correction for transient flow of non-isothermal hydrogen-natural gas mixture, Res. Phys., 2018, 10, 532-540. Google Scholar

[49]

Khalid A, Khan I., Khan A., Shafie S., Tlili I., Case study of MHD blood flow in a porous medium with CNTS and thermal analysis, Case Studies Therm. Eng., 2018, 12, 374-380. CrossrefGoogle Scholar

[50]

Khan I., Abro K.A., Mirbhar M.N., Tlili I., Thermal analysis in Stokes’ second problem of nanofluid: Applications in thermal engineering, Case Studies Therm. Eng., 2018, 12, 271-275. CrossrefGoogle Scholar

[51]

Afridi M.I., Qasim M., Khan I., Tlili I., Entropy generation in MHD mixed convection stagnation-point flow in the presence of joule and frictional heating, Case Studies Therm. Eng., 2018, 12, 292-300. CrossrefGoogle Scholar

[52]

Khan M.N., Tlili I., New advancement of high performance for a combined cycle power plant: Thermodynamic analysis, Case Studies in Thermal Engineering, 2018, 12, 166-175. CrossrefGoogle Scholar

[53]

Khan M.N., Tlili I., Performance enhancement of a combined cycle using heat exchanger bypass control: A thermodynamic investigation, J. Clean. Prod., 2018, 192(10), 443-452. CrossrefGoogle Scholar

[54]

Khan Z.A., Haq S., Khan T.S., Khan I., Tlili I., Unsteady MHD flow of a Brinkman type fluid between two side walls perpendicular to an infinite plate, Res. Phys., 2018, 9, 1602-1608. Google Scholar

[55]

Aman S., Khan I., Ismail Z., Salleh M.Z., Tlili I., A new Caputo time fractional model for heat transfer enhancement of water based graphene nanofluid: An application to solar energy, Res. Phys., 2018, 9, 1352-1362. Google Scholar

[56]

Khan Z., Khan I., Ullah M., Tlili I., Effect of thermal radiation and chemical reaction on non-Newtonian fluid through a vertically stretching porous plate with uniform suction, Res. Phys., 2018, 9, 1086-1095. Google Scholar

[57]

Khan I., Tlili I., Imran M.A., Miraj F., MHD fractional Jeffrey’s fluid flow in the presence of thermo diffusion, thermal radiation effects with first order chemical reaction and uniform heat flux, Res. Phys. 2018, 10, 10-17. Google Scholar

[58]

Tlili I., Khan W., Khan I., Multiple slips effects on MHD SA-Al2O3 and SA-Cu non-Newtonian nanofluids flow over a stretching cylinder in porous medium with radiation and chemical reaction, Res. Phys., 2018, 8, 213-222. Google Scholar

[59]

Khan Z., Rasheed H., Tlili I., Khan I., Abbas T., Runge-Kutta 4th-order method analysis for viscoelastic Oldroyd 8-constant fluid used as coating material for wire with temperature dependent viscosity, Sci. Rep., 2018, 8(8), 14504. CrossrefGoogle Scholar

[60]

Tlili I., Hamadneh N.N., Khan W.A., Thermodynamic Analysis of MHD Heat and Mass Transfer of Nanofluids Past a Static Wedge with Navier Slip and Convective Boundary Conditions, Arab. J. Sci. Eng., 2018, 1-13. Google Scholar

[61]

Tlili I., Hamadneh N.N., Khan W.A., Atawneh S., Thermodynamic analysis of MHD Couette-Poiseuille flow of water-based nanofluids in a rotating channel with radiation and Hall effects, J. Therm. Anal. Calorim., 2018, 132(3), 1899-1912. CrossrefGoogle Scholar

[62]

Khan M.N., Tlili I., Khan W., Thermodynamic Optimization of New Combined Gas/Steam Power Cycles with HRSG and Heat Exchanger, Arabian J. Sci. Eng., 2017, 42(11), 4547-4558. CrossrefGoogle Scholar

[63]

Makinde O.D., Tlili I., Mabood F., Khan W., Tshehla M.S., MHD Couette-Poiseuille flow of variable viscosity nanofluids in a rotating permeable channel with Hall effects, J. Mol. Liq., 2016, 221, 778-787. CrossrefGoogle Scholar

[64]

Sa’ed A., Musmar A.T., Al-Halhouli, Tlili I., Büttgenbach S., Performance Analysis of a New Water-based Microcooling System, Exp. Heat Transf., 2016, 29(4), 485-499. CrossrefGoogle Scholar

[65]

Ramadan K., Tlili I., Shear work, viscous dissipation and axial conduction effects on microchannel heat transfer with a constant wall temperature, Proc. Instit. Mech. Eng., Part C: J. Mech. Eng. Sci., 2016, 230(14), 2496-2507. CrossrefGoogle Scholar

[66]

Ramadan K., Tlili I., A Numerical Study of the Extended Graetz Problem in a Microchannel with Constant Wall Heat Flux: Shear Work Effects on Heat Transfer, J. Mech., 31(6), 733-743. CrossrefGoogle Scholar

[67]

Musmar S.A., Razavinia N., Mucciardi F., Tlili I., Performance analysis of a new Waste Heat Recovery System, Int. J. Therm. Envir. Eng., 2015, 10, 31-6. Google Scholar

[68]

Khan W., Gul T., Idrees M., Islam S., Khan I., Dennis L.C.C. Thin Film Williamson Nanofluid Flow with Varying Viscosity and Thermal Conductivity on a Time-Dependent Stretching Sheet, Appl. Sci., 2016. Google Scholar

[69]

Adomian G., Review of the Decomposition Method and Some Recent Results for Non-Linear Equations, Math. Comput. Model., 1992, 13 287-299.Google Scholar

[70]

Wazwaz A.M., Adomian Decomposition Method for a Reliable Treatment of the Bratu-Type Equations, Appl. Math. Comput., 2005, 166 652-663. Google Scholar

[71]

Wazwaz A.M., Adomian Decomposition Method for a Reliable Treatment of the Emden-Fowler Equation, Appl. Math. Comput., 2005, 161 543-560. Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.