[1]

Tang X., Yu X., Ren S., Solid liquid two phase fluid dynamics and its application in hydraulic machinery, The Yellow River water conservancy Publishing Press, Zhengzhou, 2006. Google Scholar

[2]

Pyskunovs S.O., Maksimyk Yu.V., Valer V.V., Finite Element Analysis of Influence of Non-homogenous Temperature Field on Designed Lifetime of Spatial Structural Elements under Creep Conditions, Appl. Math. Nonlinear Sci., 2016, 1(1), 253-262. CrossrefGoogle Scholar

[3]

Wang S., Dynamic characteristic analysis and synthetical optimization of Francis turbine’s runner, PhD thesis, Institute of Mechanical Science, Beijing, 2003. Google Scholar

[4]

Trivedi C., Cervantes M.J., Gandhi K., Investigation of a High Head Francis Turbine at Runaway Operating Conditions, Energies, 2016, 149(9), 1-22. Web of ScienceGoogle Scholar

[5]

Li H., Chen D., Zhang H., Wu C. Wang X., Hamiltonian analysis of a hydro-energy generation system in the transient of sudden load increasing, Appl. Energy, 2017, 185, 244-253. Web of ScienceCrossrefGoogle Scholar

[6]

Binjuan Z., Shouqi Y. Houlin L., Zhongfu H., Mingao T., Simulation of solid-liquid two-phase turbulent flow in double channel pump based on Mixture model, Trans. CSAE, 2008, 24(1), 7-12. Google Scholar

[7]

Vajravelu K., Sreenadh S., Saravana R., Influence of velocity slip and temperature jump conditions on the peristaltic flow of a Jeffrey fluid in contact with a Newtonian fluid, Appl. Math. Nonlinear Sci., 2017, 2(2), 429-442. CrossrefGoogle Scholar

[8]

Zhang Y., Li Y., Cui B., Zhu Z. Dou H., Numerical simulation and analysis of solid liquid two-phase flow in centrifugal pump, Chin. J. Mech. Eng., 2013, 26(1), 53-60. CrossrefWeb of ScienceGoogle Scholar

[9]

Zhang Y., Transient internal flow and external characteristics of the start-up process of a centrifugal pump, PhD thesis, Zhejiang University, Zhejiang, 2016. Google Scholar

[10]

Wang J., Jiang W., Kong F., Qu X., Su X., Numerical simulation of solid-liquid two-phase turbulent flow in centrifugal pump based on Particle model, J. Drain. Irrig. Mech. Eng., 2013, 31(10), 846-850. Google Scholar

[11]

Wang J., Jiang W., Kong F., Su X. Chen H., Numerical simulation of Solid-liquid two-phase turbulent flow and wear characteristics of centrifugal pump, Trans. Chin. Soc. Agric. Mach., 2013, 44(11), 53-60. Google Scholar

[12]

Huang J., Zhang L., Yao J. Long L., Numerical simulation of two-phase turbulent flow in Francis turbine passage on sediment erosion, J. Drain. Irrig. Mech. Eng., 2016, 34(2), 145-150. Google Scholar

[13]

Hall N., Elenany M., Zhu D.Z., Rajaratnam N., Experimental study of sand and slurry jets in water, J. Hydraul. Eng., 2010, 136(10), 727-738. Web of ScienceCrossrefGoogle Scholar

[14]

Azimi A.H., Zhu D.Z. Nallamuthu R., Computational investigation of vertical slurry jets in water, Int. J. Multiphase Flow, 2012, 47, 94-114. Web of ScienceCrossrefGoogle Scholar

[15]

Azimi A.H., Zhu D.Z., Nallamuthu R., Experimental study of sand jet front in water, Int. J. Multiphase Flow, 2012, 40, 19-37. Web of ScienceCrossrefGoogle Scholar

[16]

Ansys, ANSYS CFX-Solver Modeling Guide Release 13.0. New York: Ansys Inc, 2010. Google Scholar

[17]

Zhou L., Shi W., Lu W., Li H., Pei B.,. Analysis on pressure fluctuation of unsteady flow in deep-well centrifugal pump, Trans. Chin. Soc. Agric. Mach., 2011, 27(10), 44-49. Google Scholar

[18]

Guangjie P., Zhengwei W., Yexiang X. Yongyao L., Abrasion predictions for Francis turbines based on liquid-solid two phase fluid simulations, Eng. Failure Anal., 2013, 33, 327- 335. CrossrefWeb of ScienceGoogle Scholar

[19]

Noon A.A., Kim M.H., Erosion wear on Francis turbine components due to sediment flow, Wear, 2017, 378-379, 126-135. Web of ScienceGoogle Scholar

[20]

Thapa B.S., Thapa B., Dahlhaug O.G., Empirical modelling of sediment erosion in Francis turbines, Energy, 2012, 41, 386-391. CrossrefWeb of ScienceGoogle Scholar

[21]

Zhao W.,Wang L., Zhang Z., A novel atom search optimization for dispersion coefficient estimation in groundwater, Future Gener. Comput. Syst., 2019, 91, 601-610. CrossrefGoogle Scholar

[22]

Zhao W., Wang L., An Effective Bacterial Foraging Optimizer for Global Optimization, Inf. Sci., 2016, 329, 719-735. CrossrefWeb of ScienceGoogle Scholar

[23]

Celebioglu K., Altintas B., Aradag S., Tascioglu Y., Numerical research of cavitation on Francis turbine runners, Int. J. Hydrogen Energy, 2017, 42(28), 17771-17781. CrossrefWeb of ScienceGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.