Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Paladyn, Journal of Behavioral Robotics

Editor-in-Chief: Schöner, Gregor

1 Issue per year

Open Access
See all formats and pricing
More options …

Computing Networks: A General Framework to Contrast Neural and Swarm Cognitions

Carlos Gershenson
  • Computer Sciences Department Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas Universidad Nacional Autónoma de Mexico Ciudad Universitaria, A.P. 20-726 01000 Mexico D.F. Mexico
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2010-09-09 | DOI: https://doi.org/10.2478/s13230-010-0015-z


This paper presents the Computing Networks (CNs) framework. CNs are used to generalize neural and swarm architectures. Artificial neural networks, ant colony optimization, particle swarm optimization, and realistic biological models are used as examples of instantiations of CNs. The description of these architectures as CNs allows their comparison. Their differences and similarities allow the identification of properties that enable neural and swarm architectures to perform complex computations and exhibit complex cognitive abilities. In this context, the most relevant characteristics of CNs are the existence multiple dynamical and functional scales. The relationship between multiple dynamical and functional scales with adaptation, cognition (of brains and swarms) and computation is discussed.

Keywords: cognition; computation; neural architecture; swarm architecture; swarm cognition; multiple scales


  • [1] B. Hölldobler, and E. O. Wilson, The Ants. Belknap Press, 1990.Google Scholar

  • [2] S. Aron, J. L. Deneubourg, S. Goss, and J.M. Pasteels, Functional self-organization illustrated by inter-nest traffic in ants: The case of the argentinian ant. In W. Alt and G. Hoffman, Eds., Biological Motion, volume 89 of Lecture Notes in BioMathematics, 533-547. Springer, Berlin, 1990.Google Scholar

  • [3] Z. Reznikova, Animal Intelligence From Individual to Social Cognition. Cambridge University Press, 2007.Google Scholar

  • [4] B. Ryabko, and Z. Reznikova, The use of ideas of information theory for studying ”language” and intelligence in ants. Entropy, 11(4), 836-853, 2009.CrossrefGoogle Scholar

  • [5] E. Bonabeau, M. Dorigo, and G. Theraulaz, Swarm Intelligence: From Natural to Artificial Systems. Santa Fe Institute Studies in the Sciences of Complexity. Oxford University Press, New York, 1999.Google Scholar

  • [6] M. Dorigo, and T. Stützle, Ant Colony Optimization. MIT Press, July 2004.Google Scholar

  • [7] M. Dorigo, V. Trianni, E. Sahin, R. Groß, T. H. Labella, G. Baldassarre, S. Nolfi, J.-L. Deneubourg, F. Mondada, D. Floreano, and L. Gambardella. Evolving self-organizing behaviors for a swarm-bot. Autonomous Robots, 17(2-3), 223-245, 2004.CrossrefGoogle Scholar

  • [8] D. R. Chialvo, and M. M. Millonas, How swarms build cognitive maps. In L. Steels, Ed., The biology and technology of intelligent autonomous agents, volume 144, 439-450, 1995.Google Scholar

  • [9] I. D. Couzin, Collective cognition in animal groups. Trends in Cognitive Sciences, 13(1), 36-43, 2009.Google Scholar

  • [10] J. A. R. Marshall, R. Bogacz, A. Dornhaus, R. Planqué, T. Kovacs, and N. R Franks, On optimal decision-making in brains and social insect colonies. Journal of the Royal Society Interface, 2009.Google Scholar

  • [11] K. M. Passino, T. D. Seeley, and P. Kirk Visscher, Swarm cognition in honey bees. Behavioral Ecology and Sociobiology, 62(3), 401-414, January 2008.CrossrefGoogle Scholar

  • [12] V. Trianni and E. Tuci, Swarm cognition and artificial life. In Advances in Artificial Life. Proceedings of the 10th European Conference on Artificial Life (ECAL 2009), 2009.Google Scholar

  • [13] M. E. J. Newman, The structure and function of complex networks. SIAM Review, 45, 167-256, 2003.Google Scholar

  • [14] M. Newman, A. Barabási, and D. J. Watts, Eds., The Structure and Dynamics of Networks. Princeton Studies in Complexity. Princeton University Press, 2006.Google Scholar

  • [15] D. E. Rumelhart, J. L. McClelland, and the PDP Research Group, Eds. Parallel Distributed Processing: Explorations in the Microstructure of Cognition. MIT Press, 1986.Google Scholar

  • [16] J. J. Hopfield, Artificial neural networks. Circuits and DevicesMagazine, IEEE, 4(5), 3-10, 1988.Google Scholar

  • [17] M. Dorigo, V. Maniezzo, and A. Colorni, Positive feedback as a search strategy. Technical Report 91-016, Dipartimento di Elettronica, Politecnico di Milano, 1991.Google Scholar

  • [18] M. Dorigo and C. Blum, Ant colony optimization theory: A survey. Theoretical Computer Science, 44(2-3), 243-278, 2005.CrossrefGoogle Scholar

  • [19] M. Dorigo, Ant colony optimization. Scholarpedia, 2(3), 1461, 2007.Google Scholar

  • [20] J. Kennedy and R. Eberhart, Particle swarm optimization. In Proceedings of IEEE International Conference on Neural Networks, 1942-1948, Piscataway, NJ, 1995. IEEE Press.Google Scholar

  • [21] J. Kennedy and R. Eberhart, Swarm Intelligence. Morgan Kaufmann, San Francisco, CA, 2001.Google Scholar

  • [22] M. Dorigo, M. A. Montes de Oca, and A. Engelbrecht, Particle swarm optimization. Scholarpedia, 3(11), 1486, 2008.Google Scholar

  • [23] C. Gershenson. Classification of random Boolean networks. In R. K. Standish, M. A. Bedau, and H. A. Abbass, editors, Artificial Life VIII: Proceedings of the Eight International Conference on Artificial Life, 1-8. MIT Press, 2002.Google Scholar

  • [24] C. Gershenson, Updating schemes in random Boolean networks: Do they really matter? In J. Pollack, M. Bedau, P. Husbands, T. Ikegami, and R. A. Watson, Eds., Artificial Life IX Proceedings of the Ninth International Conference on the Simulation and Synthesis of Living Systems, 238-243. MIT Press, 2004.Google Scholar

  • [25] A. Wuensche, Discrete dynamical networks and their attractor basins. In R. Standish, B. Henry, S. Watt, R. Marks, R. Stocker, D. Green, S. Keen, and T. Bossomaier, Eds., Complex Systems ’98, 3-21, University of New South Wales, Sydney, Australia, 1998.Google Scholar

  • [26] W. S. McCulloch and W. Pitts, A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biology, 5(4), 115-133, 1943.Google Scholar

  • [27] J. J. Hopfield, Neural networks and physical systems with emergent collective computational abilities. Proceedings of the National Academy of Sciences, 79(8), 2554, 1982.Google Scholar

  • [28] T. Kohonen, Self-Organizing Maps. Springer, 3rd edition, 2000.Google Scholar

  • [29] S. Garnier, J. Gautrais, and G. Theraulaz, The biological principles of swarm intelligence. Swarm Intelligence, 1(1), 3-31, 2007.Google Scholar

  • [30] C. W. Reynolds, Flocks, herds, and schools: A distributed behavioral model. Computer Graphics, 21(4), 25-34, 1987.CrossrefGoogle Scholar

  • [31] J. Johnson, Hypernetworks in the Science of Complex Systems, volume 1 of Series on Complexity Science. World Scientific, 2010.Google Scholar

  • [32] E. M. Rauch, M. M. Millonas, and D. R. Chialvo, Pattern formation and functionality in swarm models. Physics Letters A, 207(3-4), 185-193, 1995.CrossrefGoogle Scholar

  • [33] M. Nagy, Z. Akos, D. Biro, and T. Vicsek, Hierarchical group dynamics in pigeon flocks. Nature, 464:890-893, 2010.Google Scholar

  • [34] I. D. Couzin, J. Krause, R. James, G. D. Ruxton, and N. R Franks, Collective memory and spatial sorting in animal groups. Journal of Theoretical Biology, 218(1), 1-11, 2002.CrossrefGoogle Scholar

  • [35] W. Fontana, Modelling ’evo-devo’ with RNA. BioEssays, 24(12), 1164-1177, 2002.CrossrefPubMedGoogle Scholar

  • [36] A. Munteanu and R. V. Solé, Neutrality and robustness in evodevo: Emergence of lateral inhibition. PLoS Comput Biol, 4(11), e1000226, 2008.CrossrefGoogle Scholar

  • [37] C. Balkenius, J. Zlatev, C. Brezeal, K. Dautenhahn, and H. Kozima, Eds. Proceedings of the First International Workshop on Epigenetic Robotics: Modeling Cognitive Development in Robotic Systems, volume 85, Lund, Sweden, 2001. Lund University Cognitive Studies.Google Scholar

  • [38] H. M. Botee and E. Bonabeau, Evolving ant colony optimization. Advances in Complex Systems, 1, 149-159, 1998.Google Scholar

  • [39] J. H. Holland, Adaptation in natural and artificial systems. The University of Michigan Press, 1975.Google Scholar

  • [40] J. H. Holland, Hidden Order: How Adaptation Builds Complexity. Helix books. Addison-Wesley, July 1995.Google Scholar

  • [41] Y. Bar-Yam, Multiscale variety in complex systems. Complexity, 9(4), 37-45, 2004.Google Scholar

  • [42] M. Prokopenko, F. Boschetti, and A. Ryan, An information-theoretic primer on complexity, self-organisation and emergence. Complexity, 15(1), 11-28, 2009.CrossrefGoogle Scholar

  • [43] C. Gershenson, The world as evolving information. In Yaneer Bar-Yam, Ed., Proceedings of International Conference on Complex Systems ICCS2007, 2007.Google Scholar

  • [44] J. von Neumann, The Theory of Self-Reproducing Automata. University of Illinois Press, 1966. Edited by A. W. Burks.Google Scholar

  • [45] S. Wolfram, Theory and Application of Cellular Automata. World Scientific, 1986.Google Scholar

  • [46] A. Wuensche and M. J. Lesser, The Global Dynamics of Cellular Automata; An Atlas of Basin of Attraction Fields of One-Dimensional Cellular Automata. Santa Fe Institute Studies in the Sciences of Complexity. Addison-Wesley, Reading, MA, 1992.Google Scholar

  • [47] S. Wolfram, A New Kind of Science. Wolfram Media, 2002.Google Scholar

  • [48] G. Juárez Martínez, H. V. McIntosh, J. C. Seck Tuoh Mora, and S. V. Chapa Vergara, Rule 110 objects and other collision-based constructions. Journal of Cellular Automata, 2(3), 219-242, 2007.Google Scholar

  • [49] M. Cook, Universality in elementary cellular automata. Complex Systems, 15(1), 1-40, 2004.Google Scholar

  • [50] H. A. Simon, The Sciences of the Artificial. MIT Press, 3rd edition, 1996.Google Scholar

  • [51] G. Schlosser and G. P. Wagner, Modularity in Development and Evolution. The University of Chicago Press, 2004.Google Scholar

  • [52] W. Callebaut and D. Rasskin-Gutman, Modularity: Understanding the Development and Evolution of Natural Complex Systems. MIT Press, 2005.Google Scholar

  • [53] D. H. Wolpert and W. G. Macready, No free lunch theorems for search. Technical Report SFI-WP-95-02-010, Santa Fe Institute, 1995.Google Scholar

  • [54] D. H. Wolpert and W. G. Macready, No Free Lunch Theorems for Optimization. IEEE Transactions on Evolutionary Computation, 1(1), 67-82, 1997.Google Scholar

  • [55] C. Gershenson, Cognitive paradigms: Which one is the best? Cognitive Systems Research, 5(2), 135-156, June 2004.Google Scholar

  • [56] A. M. Turing. On computable numbers, with an application to the Entscheidungsproblem. Proceedings of the London Mathematical Society, Series 2, 42:230-265, 1936.Google Scholar

  • [57] Z. Wang, G. L. Durst, R. C. Eberhart, D. B. Boyd, and Z. B. Miled, Particle swarm optimization and neural network application for qsar. In In HiCOMB, 26-30, 2004.Google Scholar

  • [58] Y. Chen, B. Yang, and J. Dong, Evolving flexible neural networks using ant programming and pso algorithm. Advances in Neural Networks ISNN 2004, 211-216, 2004.Google Scholar

  • [59] C. Blum and K. Socha, Training feed-forward neural networks with ant colony optimization: An application to pattern classification. Hybrid Intelligent Systems, International Conference on, 233-238, 2005.Google Scholar

  • [60] B. Mozafari, A. M. Ranjbar, T. Amraee, M. Mirjafari, and A. R. Shirani, A hybrid of particle swarm and ant colony optimization algorithms for reactive power market simulation. Journal of Intelligent and Fuzzy Systems, 17(6), 557-574, 2006.Google Scholar

  • [61] C. Martin and J. Reggia, Self-assembly of neural networks viewed as swarm intelligence. Swarm Intelligence, 4(1), 1-36, 2010.Google Scholar

  • [62] G. Stahl, Group Cognition: Computer Support for Building Collaborative Knowledge. MIT Press, 2006.Google Scholar

  • [63] C. Gershenson and F. Heylighen, When can we call a system selforganizing? In W Banzhaf, T. Christaller, P. Dittrich, J. T. Kim, and J. Ziegler, editors, Advances in Artificial Life, 7th European Conference, ECAL 2003 LNAI 2801, 606-614, Berlin, 2003. Springer.Google Scholar

  • [64] C. Gershenson, Design and Control of Self-organizing Systems. CopIt Arxives, Mexico, 2007.http://tinyurl.com/DCSOS2007.

  • [65] D. T. Pham, A. Ghanbarzadeh, E. Koc, S. Otri, S. Rahim, and M. Zaidi, The bees algorithm a novel tool for complex optimisation problems. In Intelligent production machines and systems: 2nd I* PROMS Virtual Conference, 3-14 July 2006, page 454. Elsevier Science, 2006.Google Scholar

  • [66] X. Yang, Firefly algorithms for multimodal optimization. In Osamu Watanabe and Thomas Zeugmann, editors, SAGA, volume 5792 of Lecture Notes in Computer Science, 169-178. Springer, 2009.Google Scholar

  • [67] K. N. Krishnanand and D. Ghose, Glowworm swarm optimization for simultaneous capture of multiple local optima of multimodal functions. Swarm Intelligence, 3(2), 87-124, June 2009.Google Scholar

About the article

Received: 2010-07-26

Accepted: 2010-08-25

Published Online: 2010-09-09

Published in Print: 2010-06-01

Citation Information: Paladyn, Journal of Behavioral Robotics, ISSN (Online) 2081-4836, DOI: https://doi.org/10.2478/s13230-010-0015-z.

Export Citation

© Carlos Gershenson. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Carlos Gershenson and Yamir Moreno
PLoS ONE, 2011, Volume 6, Number 6, Page e21469
Wendy Aguilar, Guillermo Santamaría-Bonfil, Tom Froese, and Carlos Gershenson
Frontiers in Robotics and AI, 2014, Volume 1
Roman Anselmo Mora-Gutiérrez, Javier Ramírez-Rodríguez, Eric Alfredo Rincón-García, Antonin Ponsich, Oscar Herrera, and Pedro Lara-Velázquez
Soft Computing, 2014, Volume 18, Number 10, Page 1931
Carlos Gershenson
Artificial Life, 2013, Volume 19, Number 3_4, Page 401
Keith D. Farnsworth, John Nelson, and Carlos Gershenson
Acta Biotheoretica, 2013, Volume 61, Number 2, Page 203
Carlos Gershenson and Nelson Fernández
Complexity, 2012, Volume 18, Number 2, Page 29
Carlos Gershenson and David A. Rosenblueth
Complexity, 2012, Volume 17, Number 4, Page 23

Comments (0)

Please log in or register to comment.
Log in