Jump to ContentJump to Main Navigation
Show Summary Details

Paladyn, Journal of Behavioral Robotics

Editor-in-Chief: Schöner, Gregor

1 Issue per year

Open Access
Online
ISSN
2081-4836
See all formats and pricing




Multi-Vehicle Planning using RRT-Connect*

Rahul Kala
  • School of Cybernetics, School of Systems Engineering, University of Reading, Whiteknights, Reading, Berkshire, United Kingdom
  • :
/ Kevin Warwick
  • School of Cybernetics, School of Systems Engineering, University of Reading, Whiteknights, Reading, Berkshire, United Kingdom
  • :
Published Online: 2012-03-12 | DOI: https://doi.org/10.2478/s13230-012-0004-5

Abstract

The problem of planning multiple vehicles deals with the design of an effective algorithm that can cause multiple autonomous vehicles on the road to communicate and generate a collaborative optimal travel plan. Our modelling of the problem considers vehicles to vary greatly in terms of both size and speed, which makes it sub-optimal to have a faster vehicle follow a slower vehicle or for vehicles to drive with predefined speed lanes. It is essential to have a fast planning algorithm whilst still being probabilistically complete. The Rapidly Exploring Random Trees (RRT) algorithm developed and reported on here uses a problem specific coordination axis, a local optimization algorithm, priority based coordination, and a module for deciding travel speeds. Vehicles are assumed to remain in their current relative position laterally on the road unless otherwise instructed. Experimental results presented here show regular driving behaviours, namely vehicle following, overtaking, and complex obstacle avoidance. The ability to showcase complex behaviours in the absence of speed lanes is characteristic of the solution developed.

Keywords: autonomous vehicles; rapidly exploring random trees; RRT-Connect; multi-robot path planning; coordination; robocars; planning; intelligent vehicles

References

  • [1] M. Buehler, K. Iagnemma, S. Singh, The 2005 DARPA grand challenge: the great robot race, Springer, Berlin, Heidelberg, 2007.

  • [2] G. Seetharaman, A. Lakhotia, E. P. Blasch, Unmanned Vehicles Come of Age: The DARPA Grand Challenge, Computer, 39(12) (2006), 26-29.

  • [3] S. Tsugawa, Inter-vehicle communications and their applications to intelligent vehicles: an overview, Proceedings of the IEEE Intelligent Vehicle Symposium Vol. 2, 2002, 564-569.

  • [4] M. Montemerlo, J. Becker, S. Bhat, H. Dahlkamp, D. Dolgov, S. Ettinger, D. Haehnel, T. Hilden, G. Hoffmann, B. Huhnke, D. Johnston, S. Klumpp, D. Langer, A. Levandowski, J. Levinson, J. Marcil, D. Orenstein, J. Paefgen, I. Penny, A. Petrovskaya, M. Pflueger, G. Stanek, D. Stavens, A. Vogt, S. Thrun, Junior: The Stanford entry in the Urban Challenge, Journal of Field Robotics, 25(9) (2008), pp 569–597, 2008. [Web of Science]

  • [5] S. A. Nobe, F. Y. Wang, An overview of recent developments in automated lateral and longitudinal vehicle controls, Proceedings of the 2001 IEEE International Conference on Systems, Man, and Cybernetics vol.5, 2001, 3447-3452.

  • [6] L. Vanajakshi, S. C. Subramanian, R. Sivanandan, Travel time prediction under heterogeneous traffic conditions using global positioning system data from buses, IET Intelligent Transport Systems, 3(1) (2009), 1-9. [Web of Science]

  • [7] J. R. Alvarez-Sanchez, F. de la Paz Lopez, J. M. C. Troncoso, D. de Santos Sierra, Reactive navigation in real environments using partial center of area method, Robotics and Autonomous Systems, 58(12) (2010), 1231-1237. [Web of Science] [Crossref]

  • [8] R. Kala, A. Shukla, R. Tiwari Fusion of probabilistic A* algorithm and fuzzy inference system for robotic path planning, Artificial Intelligence Review, 33(4) (2010), 275-306. [Web of Science]

  • [9] O. Khatib, Real-Time Obstacle Avoidance for Manipulators and Mobile Robots, The International Journal of Robotics Research, 5(1986), 90-98. [Crossref]

  • [10] R. Kala, A. Shukla, R. Tiwari Robotic Path Planning using Evolutionary Momentum based Exploration, Journal of Experimental and Theoretical Artificial Intelligence, 23(4) (2011a), 469-495.

  • [11] R. Kala, A. Shukla, R. Tiwari, Dynamic Environment Robot Path Planning using Hierarchical Evolutionary Algorithms, Cybernetics and Systems, 41(6) (2010), 435-454. [Web of Science] [Crossref]

  • [12] R. Kala, A. Shukla, R. Tiwari, Robotic path planning in static environment using hierarchical multi-neuron heuristic search and probability based fitness, Neurocomputing 74(14-15) (2011b), 2314-2335. [Web of Science] [Crossref]

  • [13] J. J. Kuffner, S. M. LaValle, RRT-connect: An efficient approach to single-query path planning, Proceedings of the IEEE International Conference on Robotics and Automation vol. 2, 2000, 995-1001.

  • [14] S. M. LaValle, J. J. Kuffner, Randomized kinodynamic planning, Proceedings of the IEEE International Conference on Robotics and Automation, 1999, pp. 473–479.

  • [15] Y. Kuwata, S. Karaman, J. Teo, E. Frazzoli, J. P. How, G. Fiore, Real-Time Motion Planning With Applications to Autonomous Urban Driving, IEEE Transactions on Control Systems Technology, 17(5) (2009), 1105-1118.

  • [16] J. Leonard, J. How, S. Teller, M. Berger, S. Campbell, G. Fiore, L. Fletcher, E. Frazzoli, A. Huang, S. Karaman, O. Koch, Y. Kuwata, D. Moore, E. Olson, S. Peters, J. Teo, R. Truax, M. Walter, D. Barrett, A. Epstein, K. Maheloni, K. Moyer, T. Jones, R. Buckley, M. Antone, R. Galejs, S. Krishnamurthy, J. Williams, A perception driven autonomous urban vehicle, Journal of Field Robotics, 25(10) (2008), 727–774. [Web of Science]

  • [17] S. Chakravorty, S. Kumar, Generalized sampling based motion planners with application to nonholonomic systems, Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, 2009, 4077-4082.

  • [18] R. Kala, K. Warwick, Planning of Multiple Autonomous Vehicles using RRT, Proceedings of the 10th IEEE International Conference on Cybernetic Intelligent Systems, Docklands, London, 2011.

  • [19] E. K. Xidias, P. N. Azariadis, Mission design for a group of autonomous guided vehicles, Robotics and Autonomous Systems, 59(1) (2011), 34-43. [Crossref] [Web of Science]

  • [20] C. de Boor, A Practical Guide to Splines, Springer, Berlin-Heidelberg, 1978.

  • [21] M. Bennewitz, W. Burgard, S. Thrun, Optimizing schedules for prioritized path planning of multi-robot systems, Proceedings of the 2001 IEEE International Conference on Robotics and Automation, Seoul, Korea, 2001, 271 – 276.

  • [22] M. Bennewitz, W. Burgard, S. Thrun, Finding and optimizing solvable priority schemes for decoupled path planning techniques for teams of mobile robots, Robotics and Autonomous Sysems, 41(2-3) (2002), 89–99.

  • [23] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, Chapter 11: Hash Tables, Introduction to Algorithms, Second Edition, MIT Press, Massacusettes, 2001, 221-245.

  • [24] B. Raveh, A. Enosh, D. Halperin, A Little More, a Lot Better: Improving Path Quality by a Path-Merging Algorithm, IEEE Transactions on Robotics, 27(2) (2011), 365-371. [Web of Science] [Crossref]

  • [25] R. Kala, Multi-Robot Path Planning using Co-Evolutionary Genetic Programming, Expert Systems With Applications, 39(3) (2012), 3817-3831.

  • [26] J. Bruce, M. Veloso, Real-Time Multi-Robot Motion Planning with Safe Dynamics, In: Multi-Robot Systems: From Swarms to Intelligent Automata Vol. 3, Springer, placeCityHeidelberg, 2005, 159-170.

  • [27] L. Zhang, D. Manocha, An efficient retraction-based RRT planner, IEEE International Conference on Robotics and Automation, 2008 2008, 3743-3750.

  • [28] J. Sewall, J. van den Berg, M. C. Lin, D. Manocha, Virtualized Traffic: Reconstructing Traffic Flows from Discrete Spatio-temporal Data, IEEE Transactions on Visualization and Computer Graphics, 17(1) (2011), 26-37.

  • [29] R. Schubert, K. Schulze, G. Wanielik, Situation Assessment for Automatic Lane-Change Maneuvers, IEEE Transactions on Intelligent Trasportation Systems, 11(3) (2010), 607-616.

  • [30] A. Furda, L. Vlacic, Enabling Safe Autonomous Driving in Real-World City Traffic Using Multiple Criteria Decision Making, IEEE Intelligent Trasportation Systems Magazine, 3(1) (2011), 4-17.

  • [31] J. E. Naranjo, C. González, R. García, T. de Pedro, Lane-Change Fuzzy Control in Autonomous Vehicles for the Overtaking Maneuver, IEEE Transactions on Intelligent Trasportation Systems, 9(3) (2008), 438-450.

  • [32] G. Hegeman, A. Tapani, S. Hoogendoorn, Overtaking assistant assessment using traffic simulation, Transportation Research Part C, 17(6) (2009), 617–630. [Web of Science]


Received: 2011-11-10

Accepted: 2012-01-20

Published Online: 2012-03-12

Published in Print: 2011-09-01


Citation Information: Paladyn, Journal of Behavioral Robotics. Volume 2, Issue 3, Pages 134–144, ISSN (Online) 2081-4836, DOI: https://doi.org/10.2478/s13230-012-0004-5, March 2012

© Rahul Kala et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Christopher Shackleton, Rahul Kala, and Kevin Warwick
Robotics, 2013, Volume 2, Number 1, Page 19
[2]
Rahul Kala and Kevin Warwick
Applied Intelligence, 2014, Volume 41, Number 1, Page 260
[3]
Rahul Kala and Kevin Warwick
Engineering Applications of Artificial Intelligence, 2013, Volume 26, Number 5-6, Page 1588

Comments (0)

Please log in or register to comment.