Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Paladyn, Journal of Behavioral Robotics

Editor-in-Chief: Schöner, Gregor

1 Issue per year

CiteScore 2017: 0.33

SCImago Journal Rank (SJR) 2017: 0.104

Open Access
See all formats and pricing
More options …

Genetic algorithm using a modified backward pass heuristic for the dynamic facility layout problem *

Kazi Shah Nawaz Ripon / Kyrre Glette / Dirk Koch / Mats Hovin / Jim Torresen
Published Online: 2012-03-12 | DOI: https://doi.org/10.2478/s13230-012-0008-1


Layout planning in a manufacturing company is an important economical consideration. In the past, research examining the facility layout problem (FLP) generally concerned static cases, where the material flows between facilities in the layout have been assumed to be invariant over time. However, in today’s real-world scenario, manufacturing system must operate in a dynamic and market-driven environment in which production rates and product mixes are continuously adapting. The dynamic facility layout problem (DFLP) addresses situations in which the flow among various facilities changes over time. Recently, there is an increasing trend towards implementation of industrial robot as a material handling device among the facilities. Reducing the robot energy usage for transporting materials among the facilities of an optimal layout for completing a product will result in an increased life for the robots and thus enhance the productivity of the manufacturing system. In this paper, we present a hybrid genetic algorithm incorporating jumping genes operations and a modified backward pass pair-wise exchange heuristic to determine its effectiveness in optimizing material handling cost while solving the DFLP. A computational study is performed with several existing heuristic algorithms. The experimental results show that the proposed algorithm is effective in dealing with the DFLP.

Keywords: dynamic facility layout problem (DFLP); modified backward pass pair-wise exchange heuristic; jumping genes operations; material handling (MH) cost; industrial robot


  • [1] S. S. Heragu, Facilities design, BWS, Boston, 1997Google Scholar

  • [2] D. Li, P. L. P. Rau, Y. Li, A cross-cultural study: Effect of robot appearance and Task, INT J SOC ROBOT, 2, (2010), 175–186CrossrefWeb of ScienceGoogle Scholar

  • [3] K. Holck, C. Munoz, Robots in Manufacturing, Available from: http://mfg.eng.rpi.edu/gmp/SProjectsPwrpt/s11/GMPFinalRoboticsPresentation.pdf

  • [4] H. Zhang, Factory automation with industrial robots, ARB Robotics R&D Center, 2011Google Scholar

  • [5] A. Tompkins, Facilities planning, 3rd ed., John Wiley & Sons, New York, 2003Google Scholar

  • [6] A. R. McKendall Jr, J. Shang, Hybrid ant systems for the dynamic facility layout problem, COMPUT OPER RES, 33, (2006), 790–803CrossrefGoogle Scholar

  • [7] K. S. N. Ripon, K. Glette, M. Hovin, J. Torresen, Dynamic facility layout problem with hybrid genetic algorithm, In M. Oussalah, R. Mitchell, N. H. Siddique (Eds.), Proceedings of The IEEE 9th International Conference on Cybernetic Intelligent Systems (CIS), (2010, Reading, UK), IEEE Systems, Man, & Cybernetics Society, 2010, 33–38Google Scholar

  • [8] M. A. El-Baz, A genetic algorithm for facility layout problems of different manufacturing environments, COMPUT IND ENG, 47, (2004), 233–246CrossrefGoogle Scholar

  • [9] Z. Jian, L. A. Ping, Genetic algorithm for robot workcell layout problem, (2009, Xiamen, China), Proceedings of The WRI World Congress on Software Engineering (WCSE 2009), 2009, 460–464Google Scholar

  • [10] K. Mitsuhashi, K. Yamato, Layout planning and simulation for application of robots, ADV ROBOTICS, 2, 1, (1987), 87–98CrossrefGoogle Scholar

  • [11] V. Nata, A. Tubaileh, The machine layout problem in robot cells, INT J PROD RES, 36, 5, (1998), 1273–1292Google Scholar

  • [12] A. Tubaileh, I. Hammad, L. A. Kafafi, Robot cell planning, ENG TECH, 26, (2007), World Academy of Science, 250–253, 2007Google Scholar

  • [13] A. Drira, H. Pierreval, S. H. Gabouj, Facility layout problems: A survey, ANNU REV CONTROL, 31, 2, (2007), 255–267CrossrefWeb of ScienceGoogle Scholar

  • [14] I. Castillo, T. Sim, A spring-embedding approach for the facility layout problem, J OPER RES SOC, 55, 1, (2004), 73–81CrossrefGoogle Scholar

  • [15] J. Balakrishnan, C. H. Cheng, Dynamic layout algorithms: A state-of-the-art survey, OMEGA–INT J MGMT SCI, 26, 4, (1998), 507–521CrossrefGoogle Scholar

  • [16] J. H. Holland, Adaptation in natural and artificial systems, The University of Michigan Press, Ann Arbor, MI, 1975Google Scholar

  • [17] M. H. Hu, M. -J. Wang, Using genetic algorithms on facilities layout problems, INT J ADV MANUF TECH, 23, 3–4, (2004), 301–310CrossrefGoogle Scholar

  • [18] J. Balakrishnan, C. H. Cheng, D. G. Conway, An improved pair-wise exchange heuristic for the dynamic plant layout problem, INT J PROD RES, 38, 13, (2000), 3067–3077CrossrefGoogle Scholar

  • [19] K. S. Tang, R. J. Yin, S. Kwong, K. T. Ng, K. F. Man, A theoretical development and analysis of jumping gene genetic algorithm, IEEE T IND INFORM, 7, 3, (2011), 408–418CrossrefWeb of ScienceGoogle Scholar

  • [20] W. S. Tang, S. Kwong, K. F. Man, A jumping genes paradigm: Theory, verification and applications, IEEE CIRC SYST MANAG M, 8, 4, (2008), 18–36Web of ScienceCrossrefGoogle Scholar

  • [21] T. L. Urban, A heuristic for the dynamic facility layout problem, IIE TRANS, 25, 4, (1993), 57–63CrossrefGoogle Scholar

  • [22] M. J. Rosenblatt, The dynamics of plant layout, MANAGE SCI, 32, 1, (1986), 76–86CrossrefGoogle Scholar

  • [23] J. Balakrishnan, C. H. Cheng, The dynamic plant layout problem: Incorporating rolling horizons and forecast uncertainty, OMEGA–INT J MGMT SCI, 37, 1, (2009), 165–177CrossrefWeb of ScienceGoogle Scholar

  • [24] S. P. Singh, R. R. K. Sharma, A review of different approaches to the facility layout problems, INT J ADV MANUF TECH, 30, 5–6, (2006), 425–433CrossrefGoogle Scholar

  • [25] J. Balakrishnan, R. F. Jacobs, M. A. Venkataramanan, Solutions for the constrained dynamic facility layout problem, EUR J OPER RES, 57, 2, (1992), 280–286Web of ScienceCrossrefGoogle Scholar

  • [26] D. G. Conway, M. A. Venkataramanan, Genetic search and the dynamic facility layout problem, COMPUT OPER RES, 21, 8, (1994), 955–960CrossrefGoogle Scholar

  • [27] J. Balakrishnan, C. H. Cheng, Genetic search and the dynamic layout problem, COMPUT OPER RES, 27, 6, (2000), 587–593CrossrefGoogle Scholar

  • [28] J. Balakrishnan, C. H. Cheng, D. G. Conway, C. M. Lau, A hybrid genetic algorithm for the dynamic plant layout problem, INT J PROD ECON, 86, (2003), 107–120CrossrefGoogle Scholar

  • [29] S. P. Singh, R. R. K. Sharma, Genetic algorithm based heuristics for the dynamic facility layout problem, EUR J MGMT, 8, 1, (2008), 128–134Google Scholar

  • [30] B. K. Kaku, J. B. Mazzola, A tabu search heuristic for the dynamic plant layout problem, INFORMS J COMPUT, 9, 4, (1997), 374–384Web of ScienceCrossrefGoogle Scholar

  • [31] J. B. Erel, J. Ghosh, J. T. Simon, New heuristic for the dynamic layout problem, J OPER RES SOC, 54, (2003), 1275–1282CrossrefGoogle Scholar

  • [32] A. Baykasoglu, N. N. Z. Gindy, A simulated annealing algorithm for the dynamic layout problem, COMPUT OPER RES, 28, (2001), 1403–1426CrossrefGoogle Scholar

  • [33] A. R. McKendall Jr, J. Shang, S. Kuppusamy S, Simulated annealing heuristics for the dynamic facility layout problem, COMPUT OPER RES, 33, 8, (2006), 2431–44CrossrefGoogle Scholar

  • [34] H. Rezazadeh, M. Ghazanfari, M. S. Mehrabad, An extended discrete particle swarm optimization algorithm for the dynamic facility layout problem, J ZHEJIANG UNIV-SC A, 10, 4, (2009), 520–529Web of ScienceCrossrefGoogle Scholar

  • [35] K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multiobjective genetic algorithm: NSGA–II, IEEE T EVOLUT COMPUT, 6, 2, (2002), 182–197CrossrefGoogle Scholar

  • [36] K. F. Man, T. M. Chan, K. S. Tang, S. Kwong, Jumping-genes in evolutionary computing, Proceedings of The 30th Annual Conference of the IEEE Industrial Electronics Society, (2004, Pusan, Korea), IEEE Industrial Electronics Society, 2004, 1268–1272Google Scholar

  • [37] K. S. N. Ripon, K. Glette, M. Hovin, J. Torresen, Multi-objective evolutionary approach for solving facility layout problem using local search, In Proceedings of the 2010 ACM Symposium on Applied Computing, (2010, Sierre, Switzerland), ACM, New York, NY, USA, 2010, 1155–1156Google Scholar

  • [38] S. Y. Zheng, S. H. Yeung, W. S. Chan, K. F. Man, K. S. Tang, Design of broadband hybrid coupler with tight coupling using jumping gene evolutionary algorithm, IEEE T IND ELECTRON, 56, 8, (2009), 2987–2991.CrossrefWeb of ScienceGoogle Scholar

  • [39] K. S. N. Ripon, Hybrid evolutionary approach for multi-objective job-shop scheduling problem, MALAYAS J COMPUT SCI, 20, 2, (2007), 183–198Google Scholar

  • [40] T. M. Chan, K. F. Man, K. S. Tang, S. Kwong, A jumping-genes paradigm for optimizing factory WLAN network, IEEE T IND INFORM, 3, 1, (2007), 33–43CrossrefWeb of ScienceGoogle Scholar

  • [41] K. S. N. Ripon, S. Kwong, K. F. Man, A real coding jumping gene genetic algorithm (RJGGA) for multiobjective optimization, INFORM SCIENCES, 177, 2, (2007), 632–654CrossrefGoogle Scholar

  • [42] A. Kusiak, S. Heragu, The facility layout problem, EUR J OPER RES, 29, (1987), 229-251CrossrefGoogle Scholar

  • [43] L. Wang, S. Keshavarzmanesh, H. -Y. Feng, A hybrid approach for dynamic assembly shop floor layout, Proceedings of The 6th Annual IEEE Conference on Automation Science and Engineering, (2010, Toronto, Ontario, Canada), 2010, 604–609Google Scholar

  • [44] V. Kumar, G. Bekey, Y. Zheng, Industrial, personal and service robots, In: G. Bekey (Ed.), Robotics: State Of The Art And Future Challenges (World Technology Evaluation Center, Lancaster, 2008), 89–101Google Scholar

About the article

Received: 2011-11-08

Accepted: 2012-01-20

Published Online: 2012-03-12

Published in Print: 2011-09-01

Citation Information: Paladyn, Journal of Behavioral Robotics, Volume 2, Issue 3, Pages 164–174, ISSN (Online) 2081-4836, DOI: https://doi.org/10.2478/s13230-012-0008-1.

Export Citation

© Kazi Shah Nawaz Ripon et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Tianyuan Zhu, Jaydeep Balakrishnan, and Chun Hung Cheng
INFOR: Information Systems and Operational Research, 2017, Page 1
AmirSaman Kheirkhah and Masume Messi Bidgoli
Production Engineering, 2016, Volume 10, Number 6, Page 615
Tamal Ghosh, B. Doloi, and Pranab K. Dan
The International Journal of Advanced Manufacturing Technology, 2016, Volume 86, Number 1-4, Page 237

Comments (0)

Please log in or register to comment.
Log in