Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Paladyn, Journal of Behavioral Robotics

Editor-in-Chief: Schöner, Gregor

1 Issue per year

Open Access
Online
ISSN
2081-4836
See all formats and pricing
More options …

Design and Pilot Study of a Gait Enhancing Mobile Shoe

Ismet Handzic / Eileen M. Barno / Erin V. Vasudevan / Kyle B. Reed
Published Online: 2012-03-30 | DOI: https://doi.org/10.2478/s13230-012-0010-7

Abstract

Hemiparesis is a frequent and disabling consequence of stroke and can lead to asymmetric and ineffcient walking patterns. Training on a split-belt treadmill, which has two separate treads driving each leg at a different speed, can correct such asymmetries post-stroke. However, the effects of split-belt treadmill training only partially transfer to everyday walking over ground and extended training sessions are required to achieve long-lasting effects. Our aim is to develop an alternative device, the Gait Enhancing Mobile Shoe (GEMS), that mimics the actions of the split-belt treadmill, but can be used during over-ground walking and in one’s own home, thus enabling long-term training. The GEMS does not require any external power and is completely passive; all necessary forces are redirected from the natural forces present during walking. Three healthy subjects walked on the shoes for twenty minutes during which one GEMS generated a backward motion and the other GEMS generated a forward motion. Our preliminary experiments suggest that wearing the GEMS did cause subjects to modify coordination between the legs and these changes persisted when subjects returned to normal over-ground walking. The largest effects were observed in measures of temporal coordination (e.g., duration of double-support). These results suggest that the GEMS is capable of altering overground walking coordination in healthy controls and could potentially be used to correct gait asymmetries post-stroke.

Keywords: locomotion; hemiparesis; rehabilitation; shoe; asymmetric gait; adaptation; learning

References

  • [1] C. K. Balasubramanian, M. G. Bowden, R. R. Neptune, and S. A. Kautz, Relationship between step length asymmetry and walking performance in subjects with chronic hemiparesis, Arch. Phys. Med. Rehabil. 88, (2007), 43-49Web of SciencePubMedCrossrefGoogle Scholar

  • [2] M. E. Bouton, J. B. Nelson, and J. M. Rosas, Stimulus generalization, context change, and forgetting, Psychol. Bull. 125, (1999), 171-186PubMedCrossrefGoogle Scholar

  • [3] M. G. Bowden, C. K. Balasubramanian, R. R. Neptune, and S. A. Kautz, Anterior-posterior ground reaction forces as a measure of paretic leg contribution in hemiparetic walking, Stroke 37, (2006), 872-876Google Scholar

  • [4] L. A. Boyd, and C. J. Winstein, Cerebellar stroke impairs temporal but not spatial accuracy during implicit motor learning, Neurorehabil Neural Repair 18, (2004), 134-143PubMedGoogle Scholar

  • [5] M. E. Brandstater, H. de Bruin, C. Gowland, and B. M. Clark, Hemiplegic gait: analysis of temporal variables, Arch. Phys. Med. Rehabil. 64, (1983), 583-587PubMedGoogle Scholar

  • [6] B. Brouwer, K. Parvataneni, and S. J. Olney, A comparison of gait biomechanics and metabolic requirements of overground and treadmill walking in people with stroke, Clin. Biomech. (Bristol, Avon) 24, (2009), 729-734Web of ScienceCrossrefGoogle Scholar

  • [7] A. M. Bronstein, K. L. Bunday, and R. Reynolds, What the “broken escalator” phenomenon teaches us about balance, Ann. N. Y. Acad. Sci., vol. 1164, (2009), 82-88Google Scholar

  • [8] K. L. Bunday and A. M. Bronstein, Visuo-vestibular Influences on the Moving Platform Locomotor Aftereffect, J. Neurophysiol. 99, (2008), 1354-1365Web of ScienceCrossrefGoogle Scholar

  • [9] J. T. Choi, and A. J. Bastian, Adaptation reveals independent control networks for human walking, Nat. Neurosci. 10, (2007), 1055-1062Web of ScienceGoogle Scholar

  • [10] A. de Groot, R. Decker, and K. B. Reed, Gait enhancing mobile shoe (GEMS) for rehabilitation, in Proc. Joint Eurohaptics Conf. and Symp. on Haptic Interfaces for Virtual Environment and Teleoperator Systems, March 2009, 190-195Google Scholar

  • [11] I. Handzic, E. Vasudevan, and K. B. Reed, Motion Controlled Gait Enhancing Mobile Shoe for Rehabilitation, Proc. of the 12th Intl. Conf. on Rehabilitation Robotics (ICORR), (2011), 583-587Google Scholar

  • [12] F. M. Ivey, R. F. Macko, A. S. Ryan, and C. E. Hafer-Macko, Cardiovascular health and fitness after stroke, Top Stroke Rehabil. 12, (2005), 1-16CrossrefPubMedGoogle Scholar

  • [13] J. H. Kahn, and T. G. Hornby, Rapid and long-term adaptations in gait symmetry following unilateral step training in people with hemiparesis, Phys. Ther. 89, (2009), 474-483Web of SciencePubMedCrossrefGoogle Scholar

  • [14] C. Honeycutt, J. Sushko, and K. B. Reed, Asymmetric passive dynamic walker, in Proc. IEEE Int. Conf. Rehabilitation Robotics, (2011), 852-857Google Scholar

  • [15] J. Krakauer, M. Ghilardi, and G. Ghez, Independent learning of internal models for kinematic and dynamic control of reaching, Nature Neuroscience, vol. 2, (1999), 1026-1031Google Scholar

  • [16] T. Lam, M. Anderschitz, and V. Dietz, Contribution of feedback and feedforward strategies to locomotor adaptations, J. Neurophysiol., vol. 95, (2006), 766-773Google Scholar

  • [17] T. Lam, C. Wolstenholme, and J. F. Yang, How do infants adapt to loading of the limb during the swing phase of stepping?, Journal of Neurophysiology, vol. 89, no. 4, (2003), 1920-1928Google Scholar

  • [18] D. Lloyd-Jones, et al., Heart disease and stroke statistics–2010 update: a report from the American Heart Association. Circulation 121, (2010), e46-e215Google Scholar

  • [19] J.-S. Lou and J. R. Bloedel, A new conditioning paradigm: Conditioned limb movements in locomoting decerebrate ferrets, Neuroscience Letters, vol. 84, no. 2, (1988), 185-190CrossrefGoogle Scholar

  • [20] L. A. Malone, and A. J. Bastian, Thinking about walking: effects of conscious correction versus distraction on locomotor adaptation, J. Neurophysiol. 103, (2010), 1954-1962Web of ScienceCrossrefGoogle Scholar

  • [21] T. A. Martin, J. G. Keating, H. P. Goodkin, A. J. Bastian, and W. T. Thach, Throwing while looking through prisms. I. Focal olivocerebellar lesions impair adaptation, Brain 119 (Pt 4), (1996), 1183-1198Google Scholar

  • [22] S. Morton and A. Bastian, Cerebellar Contributions to Locomotor Adaptations during Splitbelt Treadmill Walking, J. Neurosci., vol. 26, no. 36, (2006), 9107-9116CrossrefGoogle Scholar

  • [23] S. J. Olney, M. P. Griffin, and I. D. McBride, Temporal, kinematic, and kinetic variables related to gait speed in subjects with hemiplegia: a regression approach, Phys. Ther. 74, (1994), 872-885PubMedGoogle Scholar

  • [24] J. Perry, Gait Analysis: Normal and pathological function, N. S. Inc., Ed. Thorofare, vol. 50, 1992Google Scholar

  • [25] D. Reinkensmeyer, J. Emken, and S. Cramer, Robotics, motor learning, and neurologic recovery, Annu. Rev. Biomed. Eng., vol. 6, (2004), 497-525CrossrefGoogle Scholar

  • [26] D. Reisman, R. Wityk, and A. Bastian, Split-belt treadmill walking adaptation in post-stroke hemiparesis, J. Neurologic Physical Therapy, vol. 29, (2005), p. 196Google Scholar

  • [27] D. Reisman, R. Wityk, K. Silver, and A. Bastian, Locomotor adaptation on a split-belt treadmill can improve walking symmetry post-stroke, Brain, vol. 130, no. 7, (2009), 1861-1872Web of ScienceGoogle Scholar

  • [28] D. S. Reisman, R. Wityk, K. Silver, and A. J. Bastian, Split-belt treadmill adaptation transfers to overground walking in persons poststroke, Neurorehabil Neural Repair, vol. 23, no. 7, (2009), 735-744Web of ScienceGoogle Scholar

  • [29] D. S. Reisman, H. McLean, and A. J. Bastian, Split-belt treadmill training poststroke: a case study, J. Neurol. Phys. Ther., 34, (2010), 202-207CrossrefGoogle Scholar

  • [30] R. F. Reynolds and A. M. Bronstein, The broken escalator phenomenon aftereffect of walking onto a moving platform, Exp. Brain. Res., vol. 151, no. 3, (2003), 301-308Google Scholar

  • [31] R. Shadmehr, and F. A. Mussa-Ivaldi, Adaptive representation of dynamics during learning of a motor task, J. Neurosci., 14, (1994), 3208-3224Google Scholar

  • [32] N. E. Spear, Retrieval of memory in animals. Hillsdale, NJ, Erlbaum, 1978PubMedGoogle Scholar

  • [33] E. B. Titianova, and I. M. Tarkka, Asymmetry in walking performance and postural sway in patients with chronic unilateral cerebral infarction, J. Rehabil. Res. Dev., 32, (1995), 236-244Google Scholar

  • [34] G. Torres-Oviedo, and A. J. Bastian, Seeing is believing: effects of visual contextual cues on learning and transfer of locomotor adaptation, J. Neurosci., 30, (2010), 17015-17022Web of ScienceCrossrefGoogle Scholar

  • [35] E. Tulving, and D. M. Thomson, Encoding specificity and retrieval processes in episodic memory, Psychol. Rev. 80, (1973), 352-373CrossrefGoogle Scholar

  • [36] E. V. Vasudevan, and A. J. Bastian, Split-belt treadmill adaptation shows different functional networks for fast and slow human walking, J. Neurophysiol., 103, (2010), 183-191CrossrefWeb of ScienceGoogle Scholar

  • [37] E. V. Vasudevan, G. Torres-Oviedo, S. M. Morton, J. F. Yang, and A. J. Bastian, Younger is not always better: development of locomotor adaptation from childhood to adulthood, J. Neurosci., 31, (2011), 3055-3065Web of ScienceCrossrefGoogle Scholar

About the article

Received: 2011-11-01

Accepted: 2012-01-17

Published Online: 2012-03-30

Published in Print: 2011-12-01


Citation Information: Paladyn, Journal of Behavioral Robotics, Volume 2, Issue 4, Pages 193–201, ISSN (Online) 2081-4836, DOI: https://doi.org/10.2478/s13230-012-0010-7.

Export Citation

© Ismet Handzic et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Ismet Handzic, Haris Muratagic, and Kyle B. Reed
Journal of Nonlinear Dynamics, 2016, Volume 2016, Page 1

Comments (0)

Please log in or register to comment.
Log in