Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Paladyn, Journal of Behavioral Robotics

Editor-in-Chief: Schöner, Gregor

1 Issue per year

CiteScore 2017: 0.33

SCImago Journal Rank (SJR) 2017: 0.104

Open Access
See all formats and pricing
More options …

Evolution of central pattern generators for the control of a five-link bipedal walking mechanism

Atılım Güneş Baydin
  • Complex Adaptive Systems, Department of Applied Physics, Chalmers University of Technology, SE-412 96 Göteborg, Sweden
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2012-05-12 | DOI: https://doi.org/10.2478/s13230-012-0019-y


Central pattern generators (CPGs), with a basis is neurophysiological studies, are a type of neural network for the generation of rhythmic motion. While CPGs are being increasingly used in robot control, most applications are hand-tuned for a specific task and it is acknowledged in the field that generic methods and design principles for creating individual networks for a given task are lacking. This study presents an approach where the connectivity and oscillatory parameters of a CPG network are determined by an evolutionary algorithm with fitness evaluations in a realistic simulation with accurate physics. We apply this technique to a five-link planar walking mechanism to demonstrate its feasibility and performance. In addition, to see whether results from simulation can be acceptably transferred to real robot hardware, the best evolved CPG network is also tested on a real mechanism. Our results also confirm that the biologically inspired CPG model is well suited for legged locomotion, since a diverse manifestation of networks have been observed to succeed in fitness simulations during evolution.

Keywords: central pattern generator; humanoid robotics; evolutionary algorithms; evolutionary robotics; bipedal walking


  • [1] M. H. Raibert. Legged Robots That Balance. MIT Press, Boston, 1986.Google Scholar

  • [2] B. Adams, C. Breazeal, R. A. Brooks, and B. Scassellati. Humanoid robots: A new kind of tool. IEEE Intelligent Systems and Their Applications, 4:25–31, 2000.Google Scholar

  • [3] M. L. Swinson and D. J. Bruemmer. Expanding frontiers of humanoid robotics. IEEE Intelligent Systems and their Applications, 15(4):12–17, 2000.Google Scholar

  • [4] F. Yamaoka, T. Kanda, H. Ishiguro, and N. Hagita. Interacting with a human or a humanoid robot? In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2007, pages 2685–2691, 2007.Google Scholar

  • [5] Q. Huang, K. Li, and Y. Nakamura. Humanoid walk control with feedforward dynamic pattern and feedback sensory reflection. In K. Li, editor, Proceedings of the IEEE International Symposium on Computational Intelligence in Robotics and Automation, pages 29–34, 2001.Google Scholar

  • [6] S. H. Collins and A. Ruina. A bipedal walking robot with efficient and human-like gait. In A. Ruina, editor, Proceedings of the IEEE International Conference on Robotics and Automation ICRA, pages 1983–1988, 2005.Google Scholar

  • [7] K. Fujiwara, F. Kanehiro, S. Kajita, K. Yokoi, H. Saito, K. Harada, K. Kaneko, and H. Hirukawa. The first human-size humanoid that can fall over safely and stand up again. In F. Kanehiro, editor, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems IROS, volume 2, pages 1920–1926, 2003.Google Scholar

  • [8] J. Ruiz-del-Solar, R. Palma-Amestoy, R. Marchant, I. Parra-Tsunekawa, and P. Zegers. Learning to fall: Designing low damage fall sequences for humanoid soccer robots. Robotics and Autonomous Systems, 57(8):796–807, 2009.CrossrefWeb of ScienceGoogle Scholar

  • [9] A. Sano and J. Furusho. 3D dynamic walking of biped robot by controlling the angular momentum. Journal of SICE, 26:459–466, 1990.CrossrefGoogle Scholar

  • [10] S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi, and H. Hirukawa. Biped walking pattern generation by using preview control of zero-moment point. In Proceedings of the IEEE International Conference on Robotics & Automation, Taipei, Taiwan, 2003, pages 1620–1626, 2003.Google Scholar

  • [11] G. Taga, Y. Yamaguchi, and H. Shimizu. Self-organized control of bipedal locomotion by neural oscillators in unpredictable environment. Biological Cybernetics, 65:147–159, 1991.PubMedCrossrefGoogle Scholar

  • [12] P. W. Latham. A simulation study of bipedal walking robots: modeling, walking algorithms, and neural network control. PhD thesis, University of New Hampshire, Durham, NH, 1992.Google Scholar

  • [13] T. Geng, B. Porr, and F. Wörgötter. Fast biped walking with a sensor-driven neuronal controller and real-time online learning. The International Journal of Robotics Research, 25(3):243–259, 2006.CrossrefGoogle Scholar

  • [14] A. J. ljspeert. Central pattern generators for locomotion control in animals and robots: A review. Neural Networks, 21:642–653, 2008.Web of ScienceCrossrefGoogle Scholar

  • [15] S. Rossignol, R. Dubuc, and J. Gossard. Dynamic sensorimotor interactions in locomotion. Physiological Reviews, 86:89–154, 2006.CrossrefPubMedGoogle Scholar

  • [16] L. Righetti and A. ljspeert. Programmable central pattern generators: an application to biped locomotion control. In Proceedings of the 2006 IEEE International Conference on Robotics and Automation, pages 1585–1590, 2006.Google Scholar

  • [17] G. L. Liu, M. K. Habib, and K. Watanabe. Central pattern generators based on matsuoka oscillators for the locomotion of biped robots. Artificial Life and Robotics, 12:264–269, 2008.Google Scholar

  • [18] M. A. Lewis, F. Tenore, and R. Etienne-Cummings. CPG design using inhibitory networks. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA’05), Barcelona, Spain, 2005.Google Scholar

  • [19] J. Pratt, C. Chew, A. Torres, P. Dilworth, and G. Pratt. Virtual model control: An intuitive approach for bipedal locomotion. The International Journal of Robotics Research, 20(2):129–143, 2001.CrossrefGoogle Scholar

  • [20] M. A. Lewis, R. Etienne-Cummings, M. J. Haartmann, Z. R. Xu, and A. H. Cohen. An in silico central pattern generator: Silicon oscillator, coupling, entrainment, and physical computation. Biological Cybernetics, 88:137–151, 2003.CrossrefGoogle Scholar

  • [21] F. Delcomyn. Neural basis or rhythmic behavior in animals. Science, 210:492–498, 1980.PubMedCrossrefGoogle Scholar

  • [22] E. Marder and D. Bucher. Central pattern generators and the control of rhythmic movements. Current Biology, 11(23):R986–R996, 2001.CrossrefGoogle Scholar

  • [23] T. Komatsu and M. Usui. Dynamic walking and running of a bipedal robot using hybrid central pattern generator method. In Proceedings of the IEEE International Conference on Mechatronics and Automation, pages 987–992, 2005.Google Scholar

  • [24] R. Heliot and B. Espiau. Multisensor input for CPG-based sensory–motor coordination. IEEE Transactions on Robotics, 24(1):191–195, 2008.Web of ScienceCrossrefGoogle Scholar

  • [25] S. Aoi and K. Tsuchiya. Locomotion control of a biped robot using nonlinear oscillators. Autonomous Robots, 19:219–232, 2005.CrossrefGoogle Scholar

  • [26] J. Conradt and P. Varshavskaya. Distributed central pattern generator control for a serpentine robot. In O. Kaynak, E. Alpaydin, E. Oja, and L. Xu, editors, Proceedings of the International Conference on Artificial Neural Networks, 2003.Google Scholar

  • [27] D. Lachat, A. Crespi, and A. J. ljspeert. Boxybot: a swimming and crawling fish robot controlled by a central pattern generator. In A. Crespi, editor, Proceedings of the First IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechanics (BioRob), pages 643–648, 2006.Google Scholar

  • [28] K. Matsuoka. Sustained oscillations generated by mutually inhibiting neurons with adaptation. Biological Cybernetics, 52:367–376, 1985.CrossrefPubMedGoogle Scholar

  • [29] K. Matsuoka. Mechanisms of frequency and pattern control in the neural rhythm generators. Biological Cybernetics, 56:345–353, 1987.CrossrefPubMedGoogle Scholar

  • [30] S. H. Collins, M. Wisse, and A. Ruina. A three-dimensional passive dynamic walking robot with two legs and knees. International Journal of Robotics Research, 20(7):607–615, 2001.CrossrefGoogle Scholar

  • [31] R. Pfeifer and G. Gómez. Morphological computation: connecting brain, body, and environment. In Creating Brain-Like Intelligence. Springer Verlag, 2009.Google Scholar

  • [32] C. Chevallereau, G. Abba, Y. Aoustin, F. Plestan, C. Westervelt, C. Canudas-De-Wit, and J. Grizzle. RABBIT: A testbed for advanced control theory. IEEE Control Systems Magazine, 23(5):57–79, 2003.CrossrefGoogle Scholar

  • [33] M. H. Raibert. Hopping in legged systems—modeling and simulation for the 2D one-legged case. IEEE Transactions on Systems, Man and Cybernetics, 14:451–463, 1984.CrossrefWeb of ScienceGoogle Scholar

  • [34] M. Wineberg and F. Oppacher. The benefits of computing with introns. In Proceedings of the First Annual Conference on Genetic Programming, pages 410–415. MIT Press, 1996.Google Scholar

  • [35] J. Pratt and G. Pratt. Intuitive control of a planar bipedal walking robot. In Proceedings of the IEEE International Conference of Robotics and Automation, pages 2014–2021, Leuven, Belgium, 1998.Google Scholar

  • [36] J. A. Ellis, M. Stebbing, and S. B. Harrap. Significant population variation in adult male height associated with the Y chromosome and the aromatase gene. Clinical Endocrinology and Metabolism, 86(9):4147–4150, 2001.CrossrefGoogle Scholar

  • [37] N. Carey. Establishing pedestrian walking speeds. Technical report, Portland State University, 2005.Google Scholar

  • [38] R. J. Peterka and P. J. Loughlin. Dynamic regulation of sensorimotor integration in human postural control. Journal of Neurophysiology, 91:410–423, 2004.PubMedGoogle Scholar

  • [39] A. Prochazka, D. Gillard, and D. J. Bennett. Implications of positive feedback in the control of movement. Journal of Neurophysiology, 77:3237–3251, 1997.PubMedGoogle Scholar

  • [40] A. Prochazka and S. Yakovenko. Predictive and reactive tuning of the locomotor CPG. Integrative and Comparative Biology, 47(4):474–481, 2007.CrossrefWeb of ScienceGoogle Scholar

  • [41] J. C. Bongard and R. Pfeifer. Evolving complete agents using artificial ontogeny. In F. Hara and R. Pfeifer, editors, Morphofunctional Machines: The New Species, pages 237–258. Springer-Verlag, 2003.Google Scholar

About the article

Received: 2011-10-12

Accepted: 2011-12-30

Published Online: 2012-05-12

Published in Print: 2012-03-01

Citation Information: Paladyn, Journal of Behavioral Robotics, Volume 3, Issue 1, Pages 45–53, ISSN (Online) 2081-4836, DOI: https://doi.org/10.2478/s13230-012-0019-y.

Export Citation

© Atılım Güneş Baydin. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Azhar Aulia Saputra, Janos Botzheim, Indra Adji Sulistijono, and Naoyuki Kubota
IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2016, Volume 46, Number 7, Page 898
Anthony J Clark, Xiaobo Tan, and Philip K McKinley
Bioinspiration & Biomimetics, 2015, Volume 10, Number 6, Page 065006

Comments (0)

Please log in or register to comment.
Log in