Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Paladyn, Journal of Behavioral Robotics

Editor-in-Chief: Schöner, Gregor

1 Issue per year

Open Access
Online
ISSN
2081-4836
See all formats and pricing
More options …

Efficient Planning of Humanoid Motions by Modifying Constraints

ChangHyun Sung
  • Corresponding author
  • Department of Mechanical Science and Engineering, Graduate School of Engineering, Nagoya University Furo-cho Chikusa-ku, Nagoya 464-8603, Japan
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Takahiro Kagawa
  • Department of Mechanical Science and Engineering, Graduate School of Engineering, Nagoya University Furo-cho Chikusa-ku, Nagoya 464-8603, Japan
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Yoji Uno
  • Department of Mechanical Science and Engineering, Graduate School of Engineering, Nagoya University Furo-cho Chikusa-ku, Nagoya 464-8603, Japan
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-09-11 | DOI: https://doi.org/10.2478/pjbr-2013-0002

Abstract

In this paper, we propose an effective planning method for whole-body motions of humanoid robots under various conditions for achieving the task. In motion planning, various constraints such as range of motion have to be considered. Specifically, it is important to maintain balance in whole-body motion. In order to be useful in an unpredictable environment, rapid planning is an essential problem. In this research, via-point representation is used for assigning sufficient conditions to deal with various constraints in the movement. The position, posture and velocity of the robot are constrained as a state of a via-point. In our algorithm, the feasible motions are planned by modifying via-points. Furthermore, we formulate the motion planning problem as a simple iterative method with a Linear Programming (LP) problem for efficiency of the motion planning. We have applied the method to generate the kicking motion of a HOAP-3 humanoid robot. We confirmed that the robot can successfully score a goal with various courses corresponding to changing conditions of the location of an obstacle. The computation time was less than two seconds. These results indicate that the proposed algorithm can achieve efficient motion planning.

This article offers supplementary material which is provided at the end of the article.

Keywords: humanoid robot; motion planning; modifying via-point

  • [1] S. Kajita, F. Kanehiro, K. Yokoi and H. Hirukawa, IEEE International Conference on the Intelligent Robots and Systems, 239-246, 2001, Maui, USA.Google Scholar

  • [2] T. Sugihara, Y. Nakamura and H. Inoue, IEEE International Conference on Robotics and Automation, 11-15, 2002, Washington, DC, USAGoogle Scholar

  • [3] S. Kajita, F. Kanehiro, K. Fujikawa, K. Harada, K. Yokoi, H. Hirukawa, IEEE International Conference on Robotics and Automation, 14-19, 2003, Taipei, Taiwan.Google Scholar

  • [4] D.P. Bertsekas, Constrained optimization and Lagrange Multiplier methods (Academix Press, Boston, 1982).Google Scholar

  • [5] R. Hettich and K.O. Kortanek, SIAM Review, 3, 53 (1993).Google Scholar

  • [6] A. Ude and CG. Atkeson and M. Riley, IEEE International Conference on Robotics and Automation, 2223-2228, 2000, San Francisco, CA, USA.Google Scholar

  • [7] S. Miossec, K. Yokoi and A. Kheddar, IEEE International Conference on Robotics and Biomimetics, 299-304, 2006, Beijing, China.Google Scholar

  • [8] S. Carpin and E. Pagello, IEEE-RAS International Conference on Humanoid Robots, 71-77, 2006, Genova, Italy.Google Scholar

  • [9] S. Lengagne, N. Ramdani and P. Fraisse, IEEE Transactions on Robotics, 6, 27 (2011).Google Scholar

  • [10] J.H. Kim, Mechanism and Machine Theory, 4, 46 (2011).Google Scholar

  • [11] S. Lengagne, A. Kheddar, E. Yoshida, Workshop on Humanoid Service Robot Navigation in Crowded and Dynamic Environments at the IEEE Humanoids Conference, 26-28, 2011, Bled, Slovenia.Google Scholar

  • [12] S. Suzuki, Y. Tazaki, T. Suzuki, IEEE-RAS International Conference on Humanoid Robots, 596-601, 2011, Bled, Slovenia.Google Scholar

  • [13] S. Kudoh, T. Komura and K. Ikeuchi, IEEE International Conference on the Intelligent Robots and Systems, 2563-2568, 2002, EPFL Lausanne, Switzerland.Google Scholar

  • [14] A. Konno, T. Myojin, T. Matsumoto, T. Tsujita and M. Uchiyama, The international Journal of Robotics Research, 13, 30 (2011).Google Scholar

  • [15] R. Bulirsch, A. Stoer, K.-H. Well (eds), Optimal Control Theory and Numerical Method (International Series of Numerical Mathematics, Basel, Switzerland, 1993).Google Scholar

  • [16] T. Flash and H. Horgan, The Journal of Neuroscience, 7, 5 (1985).Google Scholar

  • [17] Y. Uno, M. Kawato and R. Suzuki, Biological Cybernetics, 2, 6 (1989).Google Scholar

  • [18] H. Miyamoto, S. Schaal, F. Gandolfo, H. Gomi, Y. Koike, R. Osu, E. Nakano, Y. Wada and M. Kawato, Neural Networks, 8, 9 (1996).Google Scholar

  • [19] CH. Sung, T. Kagawa and Y. Uno, International Conference on Ubiquitous Robots and Ambient Intelligence, 362-367, 2011, Incheon, Korea.Google Scholar

  • [20] S. I. Gass, Linear Programming: Methods and Applications, 5th edition (McGraw-Hill, New York, 1995).Google Scholar

  • [21] A. Piazzi and A. Visoli, IEEE Transactions on Industrial Electronics, 1, 47 (2000).Google Scholar

  • [22] CGL. Bianco and A. Piazzi, International Journal of Control, 13, 75 (2002).Google Scholar

  • [23] M. Vukobratovia and B. Borovac, International Journal of Humanoid Robotics, 1, 1 (2004).Google Scholar

  • [24] C. T. Kelly, Solving Nonlinear Equations with Newton’s Method (The Society for Industrial and Applied Mathematics, Philadelpha, 1987).Google Scholar

  • [25] RM. Murray, Z. Li and SS. Sastry, A Mathematical Introduction to Robotic Manipulation (CRC Press, Florida, 1994).Google Scholar

  • [26] M. Stilman, IEEE Transactions on Robotics, 3, 26 (2010).Google Scholar

  • [27] M. Gienger, M. Toussaint and C. Goerick, Motion Planning for Humanoid Robots (Springer, London, 2010).Google Scholar

  • [28] M. Abdallah, A. Goswami, IEEE International Conference on Robotics and Automation, 1996-2001, 2005, Barcelona, Spain.Google Scholar

  • [29] A. Goswami and V. Kallem, IEEE International Conference on Robotics and Automation, 3785-3790, 2004, LA, USA.Google Scholar

  • [30] J. Pratt, J. Carff, S. Drakunov and A. Goswami, IEEE-RAS International Conference on Humanoid Robots, 200-207, 2006, Genova, Italy.Google Scholar

  • [31] SH. Lee and A. Goswami, IEEE International Conference on Robotics and Automation, 4667-4672, 2007, California, USA.Google Scholar

  • [32] N. Perrin, O. Stasse, L. Baudouin, F. Lamiraux and E. Yoshida, IEEE Transactions on Robotics, 28, 2 (2012).Google Scholar

  • [33] A. Hornung and M. Bennewitz, IEEE International Conference on Robotics and Automation, 997-1002, 2012, Minnesota, USA.Google Scholar

  • [34] H. Noborio, T. Naniwa and S. Ariomoto, IEEE International Conference on Robotics and Automation, 327-332, 1989, Arizona, USA.Google Scholar

  • [35] A. Dasgupta, Y. Nakamura, IEEE International Conference on Robotics and Automation, 1044-1049, 1999, Detroit, MI, USA.Google Scholar

  • [36] T. Bretl, S. Rock and J.-C. Latombe, IEEE International Conference on Robotics and Automation, 2946-2953, 2003, Taipei, Taiwan. 33 Google Scholar

About the article

Published Online: 2013-09-11

Published in Print: 2013-09-01


Citation Information: Paladyn, Journal of Behavioral Robotics, ISSN (Print) 2081-4836, DOI: https://doi.org/10.2478/pjbr-2013-0002.

Export Citation

This content is open access.

Supplementary Article Materials

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Changhyun Sung, Takahiro Kagawa, and Yoji Uno
Advanced Robotics, 2015, Volume 29, Number 9, Page 573

Comments (0)

Please log in or register to comment.
Log in