Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Paladyn, Journal of Behavioral Robotics

Editor-in-Chief: Schöner, Gregor

1 Issue per year

CiteScore 2017: 0.33

SCImago Journal Rank (SJR) 2017: 0.104

ICV 2017: 99.90

Open Access
See all formats and pricing
More options …

Towards Measuring Quality of Interaction in Mobile Robotic Telepresence using Sociometric Badges

Annica Kristoffersson
  • Corresponding author
  • AASS Center of Applied Autonomous Sensor Systems, Örebro University Fakultetsgatan 1, 70182 Örebro, Sweden
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Silvia Coradeschi
  • Corresponding author
  • AASS Center of Applied Autonomous Sensor Systems, Örebro University Fakultetsgatan 1, 70182 Örebro, Sweden
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Kerstin Severinson Eklundh
  • Corresponding author
  • School of Computer Science and Communication, KTH Royal Institute of Technology 10044 Stockholm, Sweden
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Amy Loutfi
  • Corresponding author
  • AASS Center of Applied Autonomous Sensor Systems, Örebro University Fakultetsgatan 1, 70182 Örebro, Sweden
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-09-11 | DOI: https://doi.org/10.2478/pjbr-2013-0005


The field of mobile robotic telepresence for social communication is in rapid expansion and it is of interest to understand what promotes good interaction. In this paper, we present the results of an experiment where novice users working in health care were given a guided tour while maneuvering a mobile robotic telepresence system for the first time. In a previous study, it was found that subjective presence questionnaires and observations of spatial configurations based on Kendon’s F-formations were useful to evaluate quality of interaction in mobile robotic telepresence. In an effort to find more automated methods to assess the quality of interaction, the study in this paper used the same measures, with the addition of objective sociometric measures. Experimental results show that the quantitative analysis of the sociometric data correlates with a number of parameters gathered via qualitative analysis, e.g. different dimensions of presence and observed problems in maneuvering the robot.

Keywords: Mobile Robotic Telepresence; MRP systems; F-formations; Spatial Formations; Presence; Telepresence; Sociometry; Quality of Interaction

  • [1] S. O. Adalgeirsson and C. Breazeal. MeBot: A Robotic Platform for Socially Embodied Presence. In Proceedings of the5th International Conference on Human-Robot Interaction(HRI’10), pages 15-22, 2010.Google Scholar

  • [2] F. Biocca and C. Harms. Guide to the Networked Minds Social Presence Inventory. http://cogprints.org/6743/. Accessed 26 January 2013.Google Scholar

  • [3] F. Biocca and C. Harms. Networked Minds Social Presence Inventory (Scales only Version 1.2). http://cogprints.org/6742/, 2002. Accessed 26 January 2013.Google Scholar

  • [4] T. L. Chartrand and J. A. Bargh. The Chameleon Effect: The Perception-Behavior Link and Social Interaction. J Pers Soc Psy-chol, 76:893-910, 1999.CrossrefGoogle Scholar

  • [5] S. Coradeschi, A. Loutfi, A. Kristoffersson, S. von Rump, A. Cesta, G. Cortellessa, and J. Gonzalez. Towards a Methodology for Longitudinal Evaluation of Social Robotic Telepresence for Elderly. In Proceedings of the HRI 2011 Workshop Social RoboticTelepresence, pages 1-7, 2011.Google Scholar

  • [6] J. Curhan and A. Pentland. Thin Slices of Negotiation: Predicting Outcomes from Conversational Dynamics Within the First 5 Minutes. J Appl Psychol, 92(3):802-811, 2007.PubMedCrossrefGoogle Scholar

  • [7] I. S. for Presence Research. The Concept of Presence: Explication Statement. http://ispr.info, 2000. Accessed February 5 2013.Google Scholar

  • [8] J. González-Jiménez, C. Galindo, and J. Ruiz-Sarmiento. Technical Improvements of the Giraff Telepresence Robot based on Users’ Evaluation. In Proceedings of the 21st IEEE Interna-tional Symposium on Robot & Human Interactive Commu-nication (Ro-Man’12), pages 827-832, 2012.Google Scholar

  • [9] E. T. Hall. The Hidden Dimension: Man’s Use of Space inPublic and Private. The Bodley Head Ltd, London, UK, 1966.Google Scholar

  • [10] E. Hornecker. A Design Theme for Tangible Interaction: Embodied Facilitation. In Proceedings of the European Conference onComputer Supported Cooperative Work (ECSCW’05), pages 23-43, 2005.Google Scholar

  • [11] H. Hung and D. Gatica-Perez. Estimating Cohesion in Small Groups using Audio-Visual Nonverbal Behavior. IEEE Trans onMultimedia (Special Issue on Multimodal Affective Interac-tion), 12(6):563-575, 2010.Google Scholar

  • [12] H. Hüttenrauch, E. A. Topp, and K. S. Eklundh. The Art of Gate- Crashing Bringing HRI into Users’ Homes. Interaction Studies, 10(3):274-297, 2009.Web of ScienceGoogle Scholar

  • [13] W. Ijsselsteijn. Presence in the Past: What Can we Learn from Media History? In G. Riva, F. Davide, and W. A. Ijsselsteijn, editors, Being There: Concepts, Effects and Measurement of UserPresence in Synthetic Environments, pages 18-40. Ios Press, Amsterdam, The Netherlands, 2003.Google Scholar

  • [14] B. E. Insko. Measuring Presence: Subjective, Behavioral and Physiological Methods. In G. Riva, F. Davide, and W. A. Ijsselsteijn, editors, Being There: Concepts, Effects and Measure-ment of User Presence in Synthetic Environments, pages 110-119. Ios Press, Amsterdam, The Netherlands, 2003.Google Scholar

  • [15] A. Kendon. Spatial Organization in Social Encounters: The Fformation System. In Conducting Interaction: Patterns ofBehavior in Focused Encounters, pages 209-238. Cambridge University Press, 1990.Google Scholar

  • [16] T. Kim, A. Chang, L. Holland, and A. Pentland. Meeting Mediator: Enhancing Group Collaboration using Sociometric Feedback. In Proceedings of ACM CSCW’08 Conference on Computer-Supported Cooperative Work, pages 457-466, 2008.Google Scholar

  • [17] T. Kim, P. Hinds, and A. Pentland. Awareness as an Antidote to Distance: Making Distributed Groups Cooperative and Consistent. In Proceedings of ACM CSCW’12 Conference onComputer-Supported Cooperative Work, pages 1237-1246, 2012.Google Scholar

  • [18] A. Kiselev and A. Loutfi. Using a Mental Workload Index as a Measure of Usability of a User Interface for Social Robotic Telepresence. In Proceedings of the Ro-Man 2012 Workshop SocialRobotic Telepresence, 2012.Google Scholar

  • [19] A. Kristoffersson, S. Coradeschi, and A. Loutfi. A Review of Mobile Robotic Telepresence. Advances in Human-Computer Inter-action, 2013:1-17, 2013.Google Scholar

  • [20] A. Kristoffersson, S. Coradeschi, A. Loutfi, and K. S. Eklundh. Assessment of Interaction Quality in Mobile Robotic Telepresence: An Elderly Perspective. Interaction Studies. in press.Google Scholar

  • [21] A. Kristoffersson, K. S. Eklundh, and A. Loutfi. Measuring the Quality of Interaction in Mobile Robotic Telepresence A Pilot’s Perspective. International Journal of Social Robotics, 5:89-101, 2013.Web of ScienceGoogle Scholar

  • [22] H. Kuzuoka, Y. Furusawa, N. Kobayashi, and K. Yamazaki. Effect of Displaying a Remote Operator’s Face on a Media Robot. In Proceedings of Int Conf on Control, Automation and Sys-tems (ICCAS), pages 758-761, 2007.Google Scholar

  • [23] H. Kuzuoka, Y. Suzuki, J. Yamashita, and K. Yamazaki. Reconfiguring Spatial Formation Arrangement by Robot Body Orientation. In Proceedings of the 5th International Conference onHuman-Robot Interaction (HRI’10), pages 285-292, 2010.Google Scholar

  • [24] M. K. Lee and L. Takayama. ”Now, I Have a Body”: Uses and Social Norms for Mobile Remote Presence in the Workplace. In Proceedings of the 29th Annual CHI Conference on HumanFactors in Computing Systems (CHI’11), pages 33-42, 2011.Google Scholar

  • [25] J. Lessiter, J. Freeman, E. Keogg, and J. Davidoff. A Cross-Media Presence Questionnaire: The ITC-Sense of Presence Inventory. Presence, 10(3):282-297, 2001.Google Scholar

  • [26] M. Lombard and T. Ditton. A Literature-Based Presence Measurement Instrument The Temple Presence Inventory (TPI) (BETA). In PRESENCE 2004: The 7th Annual International Workshopon Presence, 2004.Google Scholar

  • [27] M. Lombard, T. B. Ditton, and L. Weinstein. Measuring Presence: The Temple Presence Inventory. In PRESENCE 2009: The12th Annual International Workshop on Presence, 2009.Google Scholar

  • [28] P. Marshall, Y. Rogers, and N. Pantidi. Using F-formations to Analyse Spatial Patterns of Interaction in Physical Environments. In Proceedings of ACM CSCW’11 Conference on Computer-Supported Cooperative Work, pages 445-454, 2011.Google Scholar

  • [29] J. L. Moreno. Who Shall Survive? Foundations of Sociom-etry, Group Psychotherapy and Sociodrama. Beacon Press, New York, USA, rev. edition, 1953.Google Scholar

  • [30] D. O. Olguín, P. A. Gloor, and A. Pentland. Capturing Individual and Group Behaviour with Wearable Sensors. In Proceedings ofHuman Behavior Modeling, AAAI Spring Symposium, 2009.Google Scholar

  • [31] D. O. Olguín and A. Pentland. Social Sensors for Automatic Data Collection. In Proceedings of the 14th Americas Conferenceon Information Systems, 2008.Google Scholar

  • [32] D. O. Olguín and A. Pentland. Assessing Group Performance from Collective Behavior. In Proceedings of ACM CSCW’10 Con-ference on Computer-Supported Cooperative Work - Work-shop on Collective Intelligence In Organizations, 2010.Google Scholar

  • [33] D. O. Olguín and A. Pentland. Sensor-Based Organisational Design and Engineering. Int J of Organisational Design andEngineering, 1(1/2):69-97, 2010.Google Scholar

  • [34] D. O. Olguín, B. N. Waber, T. Kim, A. Mohan, K. Ara, and A. Pentland. Sensible Organizations: Technology and Methodology for Automatically Measuring Organizational Behavior. IEEE Trans-actions on Systems, Man, and Cybernetics, Part B: Cyber-netics (Special Issue on Human Computing), 39(1):43-55, 2009.Google Scholar

  • [35] A. Pentland. Social Dynamics: Signals and Behavior. In Proceed-ings of International Conference on Developmental Learn-ing, 2004.Google Scholar

  • [36] A. Pentland. To Signal is Human. American Scientist, 98(3):204-211, 2010.Google Scholar

  • [37] C. Shi, M. Shimada, T. Kanda, H. Ishiguro, and N. Hagita. Spatial Formation Model for Initiating Conversation. In Proceedings ofRobotics: Science and Systems, 2011.Google Scholar

  • [38] D. Sirkin, G. Venolia, J. Tang, G. Robertson, T. Kim, K. Inkpen, M. Sedlins, B. Lee, and M. Sinclair. Motion and Attention in a Kinetic Videoconferencing Proxy. In Proceedings of the 13thInternational Conference on Human-Computer Interaction(INTERACT’11) - Volume Part I, pages 162-180, 2011.Google Scholar

  • [39] Sociometric Solutions. Organizations for Humans. http:// sociometricsolutions.com. Accessed November 6 2012.Google Scholar

  • [40] P. Tripati and W. Burleson. Predicting Creativity in the Wild: Experience Sample and Sociometric Modeling of Teams. In Proceed-ings of ACM CSCW’12 Conference on Computer-SupportedCooperative Work, pages 1203-1212, 2012.Google Scholar

  • [41] P. Vorderer, W. Wirth, F. R. Gouveia, F. Biocca, T. Saari, F. Jäncke, S. Böcking, H. Schramm, A. Gysbers, T. Hartmann, C. Klimt, J. Laarni, N. Ravaja, A. Sacau, T. Baumgartner, and P. Jäncke. MEC Spatial Presence Questionnaire (MEC- SPQ): Short Documentation and Instructions for Application. Technical report, 2004.Google Scholar

  • [42] B. N. Waber, D. O. Olguín, T. Kim, and A. Pentland. Understanding Organizational Behavior with Wearable Sensing Technology. In Academy of Management Annual Meeting, 2008.Google Scholar

  • [43] L. Wu, B. N. Waber, S. Aral, E. Brynjolfsson, and A. Pentland. Mining Face-to-Face Interaction Networks using Sociometric Badges: Predicting Productivity in an IT Configuration Task. In Proceed-ings of the International Conference on Information Sys-tems, 2008.Google Scholar

  • [44] F. Yamaoka, T. Kanda, H. Ishiguro, and N. Hagita. A Model of Proximity Control for Information-Presenting Robots. IEEE Transon Robot, 26(1):187-195, 2010. Google Scholar

About the article

Published Online: 2013-09-11

Published in Print: 2013-09-01

Citation Information: Paladyn, Journal of Behavioral Robotics, Volume 4, Issue 1, Pages 34–48, ISSN (Print) 2081-4836, DOI: https://doi.org/10.2478/pjbr-2013-0005.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Andrea Orlandini, Annica Kristoffersson, Lena Almquist, Patrik Björkman, Amedeo Cesta, Gabriella Cortellessa, Cipriano Galindo, Javier Gonzalez-Jimenez, Kalle Gustafsson, Andrey Kiselev, Amy Loutfi, Francisco Melendez, Malin Nilsson, Lasse Odens Hedman, Eleni Odontidou, Jose-Raul Ruiz-Sarmiento, Mårten Scherlund, Lorenza Tiberio, Stephen von Rump, and Silvia Coradeschi
Presence: Teleoperators and Virtual Environments, 2016, Volume 25, Number 3, Page 204

Comments (0)

Please log in or register to comment.
Log in