Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Paladyn, Journal of Behavioral Robotics

Editor-in-Chief: Schöner, Gregor

1 Issue per year

Open Access
Online
ISSN
2081-4836
See all formats and pricing
More options …

Assistive technology design and development for acceptable robotics companions for ageing years

Farshid Amirabdollahian / Rieks op den Akker / Sandra Bedaf / Richard Bormann / Heather Draper / Vanessa Evers / Jorge Gallego Pérez / Gert Jan Gelderblom / Carolina Gutierrez Ruiz / David Hewson / Ninghang Hu / Kheng Lee Koay / Ben Kröse / Hagen Lehmann / Patrizia Mart / Hervé Michel / Hélène Prevot-Huille / Ulrich Reiser / Joe Saunders / Tom Sorell / Jelle Stienstra / Dag Syrdal / Michael Walters / Kerstin Dautenhahn
Published Online: 2013-12-10 | DOI: https://doi.org/10.2478/pjbr-2013-0007

Abstract

A new stream of research and development responds to changes in life expectancy across the world. It includes technologies which enhance well-being of individuals, specifically for older people. The ACCOMPANY project focuses on home companion technologies and issues surrounding technology development for assistive purposes. The project responds to some overlooked aspects of technology design, divided into multiple areas such as empathic and social human-robot interaction, robot learning and memory visualisation, and monitoring persons’ activities at home. To bring these aspects together, a dedicated task is identified to ensure technological integration of these multiple approaches on an existing robotic platform, Care-O-Bot®3 in the context of a smart-home environment utilising a multitude of sensor arrays. Formative and summative evaluation cycles are then used to assess the emerging prototype towards identifying acceptable behaviours and roles for the robot, for example role as a butler or a trainer, while also comparing user requirements to achieved progress. In a novel approach, the project considers ethical concerns and by highlighting principles such as autonomy, independence, enablement, safety and privacy, it embarks on providing a discussion medium where user views on these principles and the existing tension between some of these principles, for example tension between privacy and autonomy over safety, can be captured and considered in design cycles and throughout project developments.

Keywords: companion technologies; assistive robots for home; ethics and technology; empathy and social interaction; learning and memory; proxemics; technology acceptability; activity monitoring

  • [1] J. R. Aiello. Human spatial behavior. Handbook of environmen-tal psychology, 1:389-504, 1987.Google Scholar

  • [2] R. C. Arkin. Behavior-based robotics. MIT press, 1998.Google Scholar

  • [3] J. C. Augusto and C. D. Nugent. The use of temporal reasoning and management of complex events in smart homes. In ECAI, volume 16, page 778. Citeseer, 2004.Google Scholar

  • [4] R. Barea, L. Bergasa, E. López, M. Escudero, J. Hernández, and Y. Willemaers. Tele-medicine system based on a personal robotic assistant. In 10th IEEE Internacional Conference on Meth-ods and Models in Automation and Robotics MMAR, volume 4, pages 909-915, 2004.Google Scholar

  • [5] R. Basri and D. W. Jacobs. Lambertian Reflectance and Linear Subspaces. IEEE Transactions on Pattern Analysis andMachine Intelligence, 25:218 - 233, 2003.Google Scholar

  • [6] S. Bedaf, G. J. Gelderblom, D. S. Syrdal, H. Lehmann, H. Michel, D. Hewson, F. Amirabdollahian, K. Dautenhahn, and L. de Witte. Which activities are threaten independent living of elderly when becoming problematic; inspiration of meaningful service robot functionality. Disability and Rehabilitation: Assistive Technol-ogy, 2013, Accepted.Google Scholar

  • [7] P. N. Belhumeur, J. P. Hespanha, and D. J. Kriegman. Eigenfaces vs. fisherfaces: Recognition using class specific linear projection. IEEE Transactions on Pattern Analysis and Machine Intel-ligence, 19(7):711-720, 1997.Google Scholar

  • [8] L. Bo, X. Ren, and D. Fox. Depth Kernel Descriptors for Object Recognition. In Proceedings of the IEEE/RSJ InternationalConference on Intelligent Robots and Systems (IROS), September 2011.Google Scholar

  • [9] J. Boger, P. Poupart, J. Hoey, C. Boutilier, G. Fernie, and A. Mihailidis. A decision-theoretic approach to task assistance for persons with dementia. In Proc. of the 19th International Joint Con-ference on Artificial Intelligence (IJCAI), pages 1293-1299, 2005.Google Scholar

  • [10] R. Bormann, J. Fischer, G. Arbeiter, and A. Verl. Adding rotational robustness to the surface-approximation polynomials descriptor. In Proceedings of the International Conference onHumanoid Robots, pages 409-416, 2012.Google Scholar

  • [11] R. Bormann, J. Fischer, G. Arbeiter, and A. Verl. Efficient object categorization with the surface-approximation polynomials descriptor. In C. Stachniss, K. Schill, and D. Uttal, editors, SpatialCognition VIII, volume 7463 of Lecture Notes in ComputerScience, pages 34-53. Springer, 2012.Google Scholar

  • [12] R. Bormann, T. Zwölfer, J. Hampp, and J. Fischer. Person recognition for service robotics applications. In Proceedings of theInternational Conference on Humanoid Robots, 2013.Google Scholar

  • [13] M. Butter, A. Rensma, J. v. Boxsel, S. Kalisingh, M. Schoone, M. Leis, G. Gelderblom, G. Cremers, M. de Wilt, W. Kortekaas, A. Thielmann, K. Cuhls, A. Sachinopoulou, and I. Korhonen. Robotic for healthcare - final report. http://www.tno.nl/downloads/TNOKvL_report_RoboticsforHealthcare.pdf, 2008.Google Scholar

  • [14] W. L. Chen, M. J. Er, and S. Q. Wu. Illumination Compensation and Normalization for Robust Face Recognition Using Discrete Cosine Transform in Logarithm Domain. IEEE Transactions onSystems, Man and Cybernetics, 36(2):458-466, 2006.Google Scholar

  • [15] CSED. Homecare re-ablement. UK Department of Health Care Services Efficiency Delivery (CSED), Dec 2012. http://www.csed.dh.gov.uk/homeCareReablement/.Google Scholar

  • [16] R. Detry, N. Pugeault, and J. Piater. A probabilistic framework for 3D visual object representation. IEEE Transactions on PatternAnalysis and Machine Intelligence, 31(10):1790-1803, Oct. 2009.Google Scholar

  • [17] T. V. Duong, H. H. Bui, D. Q. Phung, and S. Venkatesh. Activity recognition and abnormality detection with the switching hidden semi-markov model. In Computer Vision and Pattern Recog-nition, 2005. CVPR 2005. IEEE Computer Society Confer-ence on, volume 1, pages 838-845. IEEE, 2005.Google Scholar

  • [18] I. Duque, K. Dautenhahn, K. L. Koay, I. Willcock, and B. Christianson. Knowledge-driven user activity recognition for a smart house - development and validation of a generic and low-cost, resourceefficient system. In The Sixth International conference onAdvances in Computer-Human Interactions, 24 February -1 March 2013, Nice, France, pages 141-146. ACHI, 2103.Google Scholar

  • [19] G. Englebienne and B. J. Kröse. Fast bayesian people detection.\ In Proceedings of the 22nd Benelux AI Conference, BNAIC, 2010.Google Scholar

  • [20] Eurostats. Population projections. online database, April 2013. http://epp.eurostat.ec.europa.eu/statistics_explained/index.php/Population_projections.Google Scholar

  • [21] R. J. Firby. An investigation into reactive planning in complex domains. In Proceedings of the sixth National conference onArtificial intelligence, volume 1, pages 202-206. Seattle, WA, 1987.Google Scholar

  • [22] J. Fischer, G. Arbeiter, R. Bormann, and A. Verl. A framework for object training and 6 DoF pose estimation. In Proceedings ofthe 7th German Conference on Robotics (ROBOTIK 2012), Munich, Germany, May 2012.Google Scholar

  • [23] J. Fischer, G. Arbeiter, and A. Verl. Combination of time-of-flight depth and stereo using semiglobal optimization. In InternationalConference on Intelligent Robots and Systems (IROS), pages 3548-3553. IEEE, May 2011.Google Scholar

  • [24] J. Fischer, D. Seitz, and A. Verl. Face detection using 3-d time-offlight and colour cameras. In Proceedings of the Joint Confer-ence of the 41st International Symposium on Robotics (ISR)and the 6th German Conference on Robotics (ROBOTIK2010), pages 112-116, 2010.Google Scholar

  • [25] A. Georghiades, P. Belhumeur, and D. Kriegman. From Few to Many: Illumination Cone Models for Face Recognition under Variable Lighting and Pose. IEEE Transactions on Pattern Anal-ysis and Machine Intelligence, 23(6):643-660, 2001.Google Scholar

  • [26] J. J. Gibson. The ecological approach to visual perception. Psychology Press, 1986.Google Scholar

  • [27] T. Goel, V. Nehra, and V. P. Vishwakarma. Comparative Analysis of various Illumination Normalization Techniques for Face Recognition. International Journal of Computer Applications, 28(9), 2011.Google Scholar

  • [28] L. Goff-Pronost and R. Picard. Need for icts assessment in the health sector: A multidimensional framework. Communications& Strategies, (83), 2011.Google Scholar

  • [29] T. Grundmann, W. Feiten, and G. Wichert. A gaussian measurement model for local interest point based 6 DOF pose estimation. In IEEE International Conference on Robotics and Automa-tion (ICRA), pages 2085 -2090, May 2011.Google Scholar

  • [30] S. A. Gudmundsson, H. Aanaes, and R. Larsen. Fusion of stereo vision and time-of-flight imaging for improved 3D estimation. In-ternational Journal of Intelligent Systems Technologies andApplications, 5(3/4):425, 2008.Google Scholar

  • [31] U. Hahne and M. Alexa. Combining time-of-flight depth and stereo images without accurate extrinsic calibration. International Jour-nal of Intelligent Systems Technologies and Applications, 5(3/4):325, 2008.Google Scholar

  • [32] E. T. Hall and E. T. Hall. The hidden dimension. Anchor Books New York, 1969.Google Scholar

  • [33] M. Heerink, B. Kröse, V. Evers, and B. Wielinga. Assessing acceptance of assistive social agent technology by older adults: The almere model. International Journal of Social Robotics, 2(4):361-375, 2010.Google Scholar

  • [34] R. Helaoui, M. Niepert, and H. Stuckenschmidt. Recognizing interleaved and concurrent activities: A statistical-relational approach. In Pervasive Computing and Communications (Per-Com), 2011 IEEE International Conference on, pages 1-9. IEEE, 2011.Google Scholar

  • [35] R. Hg, P. Jasek, C. Rofidal, K. Nasrollahi, T. Moeslund, and G. Tranchet. An RGB-D Database Using Microsoft’s Kinect for Windows for Face Detection. In Proc. of International Conf.on Signal Image Technology and Internet Based Systems, pages 42 -46, 2012.Google Scholar

  • [36] M. L. Hoffman. Empathy and moral development: Implica-tions for caring and justice. Cambridge University Press, 2001.Google Scholar

  • [37] N. Hu, G. Englebienne, and B. J. Kröse. Bayesian fusion of ceiling mounted camera and laser range finder on a mobile robot for people detection and localization. In Human Behavior Under-standing, pages 41-51. Springer, 2012.Google Scholar

  • [38] K. Isbister and C. Nass. Consistency of personality in interactive characters: verbal cues, non-verbal cues, and user characteristics. International journal of human-computer studies, 53(2):251-267, 2000.Google Scholar

  • [39] G. P. J., D. E. Karreman, and V. Evers. Contextual analysis of the needs of elderly for independent living : is there a role for robot physical therapy? In Workshop on Motivational Aspects ofRobotics in Physical Therapy. (IROS2012), 2012.Google Scholar

  • [40] V. Jain and E. Learned-Miller. Online domain adaptation of a pretrained cascade of classifiers. In Proceedings of the IEEE Con-ference on Computer Vision and Pattern Recognition, pages 577-584, 2011.Google Scholar

  • [41] K. L. Koay, D. S. Syrdal, M. L. Walters, and K. Dautenhahn. Living with robots: Investigating the habituation effect in participants’ preferences during a longitudinal human-robot interaction study. In Robot and Human interactive Communication, 2007. RO-MAN 2007. The 16th IEEE International Symposium on, pages 564-569. IEEE, 2007.Google Scholar

  • [42] K. L. Koay, M. L. Walters, A. May, A. Dumitriu, B. Christianson, N. Burke, and K. Dautenhahn. Exploring robot etiquette: Refining a hri home companion scenario based on feedback from two artists who lived with robots in the uh robot house. In Interna-tional Conference on Social Robotics, 27-29 October 2013,Bristol, UK. ICSR, 2103.Google Scholar

  • [43] M. Krainin, P. Henry, X. Ren, and D. Fox. Manipulator and object tracking for in-hand 3D object modeling. The InternationalJournal of Robotics Research, 30:1311-1327, July 2011.Google Scholar

  • [44] H. Lehmann, D. S. Syrdal, K. Dautenhahn, G. Gelderblom, S. Bedaf, and F. Amirabdollahian. What should a robot do for you?-evaluating the needs of the elderly in the uk. In ACHI2013, The Sixth International Conference on Advances inComputer-Human Interactions, pages 83-88, 2013.Google Scholar

  • [45] J. Li, T. Wang, and Y. Zhang. Face Detection using SURF Cascade. In IEEE International Conference on Computer Vision(ICCV Workshops), pages 2183-2190, 2011.Google Scholar

  • [46] P. Marti and J. Stienstra. Exploring empathy in interaction. scenarios of respectful robotics. GeroPsych, Journal of Gerontopsy-chology and Geriatric Psychiatry, 26(2):101-1012, 2013.Google Scholar

  • [47] Z.-C. Marton, D. Pangercic, R. B. Rusu, A. Holzbach, and M. Beetz. Hierarchical Object Geometric Categorization and Appearance Classification for Mobile Manipulation. In Proceedingsof the IEEE-RAS International Conference on HumanoidRobots (Humanoids), Nashville, TN, USA, 2010.Google Scholar

  • [48] M. Merleau-Ponty. Phenomenology of perception. Motilal Banarsidass Publisher, 1996.Google Scholar

  • [49] N. A. Mirza, C. L. Nehaniv, K. Dautenhahn, and R. te Boekhorst. Grounded sensorimotor interaction histories in an information theoretic metric space for robot ontogeny. Adaptive Behaviour, 15(2):167-187, 2007.Google Scholar

  • [50] J. Modayil, T. Bai, and H. Kautz. Improving the recognition of interleaved activities. InProceedings of the 10th international con-ference on Ubiquitous computing, pages 40-43. ACM, 2008.Google Scholar

  • [51] R. Nair, F. Lenzen, S. Meister, H. Schäfer, C. S. Garbe, and D. Kondermann. High accuracy TOF and stereo sensor fusion at interactive rates. In Proceedings of the European conferenceon Computer vision (ECCV), pages 1-11, 2012.Google Scholar

  • [52] Z. S. Network. Zigbee sensor network. product database, August 2013. http://www.digi.com/products/wireless-wired-embeddedsolutions/zigbee/.Google Scholar

  • [53] N. J. Nilsson. Teleo-reactive programs and the triple-tower architecture. Electron. Trans. Artif. Intell., 5:99-110, 2001.Google Scholar

  • [54] G. E. Options. Green energy options. Company website, August 2013. http://www.greenenergyoptions.co.uk.Google Scholar

  • [55] C. Overbeeke. The aesthetics of the impossible. 2007.Google Scholar

  • [56] M. P., I. I., T. M., and S. J. Engaging through her eyes : embodying the perspective of a robot companion. In Artificial Life andRobotics, AROB2013. the 18th International Symposiumon, 2013.Google Scholar

  • [57] D. J. Patterson, D. Fox, H. Kautz, and M. Philipose. Fine-grained activity recognition by aggregating abstract object usage. In Wearable Computers, 2005. Proceedings. Ninth IEEE In-ternational Symposium on, pages 44-51. IEEE, 2005.Google Scholar

  • [58] M. L. Patterson. Nonverbal behavior: A functional perspec-tive. Springer-Verlag New York, 1983.Google Scholar

  • [59] F. Pecora, M. Cirillo, F. Dell’Osa, J. Ullberg, and A. Saffiotti. A constraint-based approach for proactive, context-aware human support. Journal of Ambient Intelligence and Smart Envi-ronments, 4(4):347-367, 2012.Google Scholar

  • [60] reablement. Demonstrating improvement through reablement. Welsh Social Services Improvement Agency, Dec 2012. www.ssiacymru.org.uk/reablement.Google Scholar

  • [61] U. Reiser, R. Klauser, C. Parlitz, and A. Verl. DESIRE WEB 2.0 - Integration Management and Distributed Software Development for Service Robots. In Proceedings of the 14th InternationalConference on Advanced Robotics (ICAR), pages 1-6, 2009.Google Scholar

  • [62] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski. ORB: an efficient alternative to SIFT or SURF. In International Conferenceon Computer Vision (ICCV), Barcelona, Nov. 2011.Google Scholar

  • [63] R. B. Rusu, G. Bradski, R. Thibaux, and J. Hsu. Fast 3D Recognition and Pose Using the Viewpoint Feature Histogram. In Pro-ceedings of the IEEE/RSJ International Conference on In-telligent Robots and Systems (IROS), 2010.Google Scholar

  • [64] R. B. Rusu, A. Holzbach, M. Beetz, and G. Bradski. Detecting and Segmenting Objects for Mobile Manipulation. In Proceedings ofthe International Conference on Computer Vision (ICCV),S3DV Workshop, 2009.Google Scholar

  • [65] J. Saunders, C. L. Nehaniv, K. Dautenhahn, and A. Alissandrakis. Self-imitation and environmental scaffolding for robot teaching. International Journal of Advanced Robotics Sys-tems, 4(1):109-124, 2007.Google Scholar

  • [66] E. Schnelle and M. Thiersch. The Metaplan-Method: Com-munication tools for planning & learning groups. Metaplan, 1979.Google Scholar

  • [67] D. A. Schön. The reflective practitioner: How professionalsthink in action, volume 5126. Basic books, 1983.Google Scholar

  • [68] G. Singla, D. J. Cook, and M. Schmitter-Edgecombe. Recognizing independent and joint activities among multiple residents in smart environments. Journal of ambient intelligence and human-ized computing, 1(1):57-63, 2010.Google Scholar

  • [69] J. Stienstra, M. B. Alonso, S. Wensveen, and S. Kuenen. How to design for transformation of behavior through interactive materiality. In Proceedings of the 7th Nordic Conference onHuman-Computer Interaction: Making Sense Through De-sign, pages 21-30. ACM, 2012.Google Scholar

  • [70] J. Stienstra and P. Marti. Squeeze me: gently please. In Proceed-ings of the 7th Nordic Conference on Human-Computer In-teraction: Making Sense Through Design, pages 746-750. ACM, 2012.Google Scholar

  • [71] J. Stienstra, P. Marti, and M. Tittarelli. Dreamy eyes: exploring dynamic expression in human-system interaction. In CHI’13 Ex-tended Abstracts on Human Factors in Computing Systems, pages 595-600. ACM, 2013.Google Scholar

  • [72] J. Stienstra, P. Marti, and M. Tittarelli. What you do is who you are: The role of task context in perceived social robot personality. In Robotics and Automation (ICRA13), International Con-ference on. IEEE, 2013.Google Scholar

  • [73] J. Stienstra, C. Overbeeke, P. Marti, P. Levy, and C. Hummels. Mapping the continuous to the discrete : Interaction aesthetics in complex products and systems. http://www.tue.nl/en/publication/ep/p/d/ep-uid/266054/,2012.Google Scholar

  • [74] L. Takayama and C. Pantofaru. Influences on proxemic behaviors in human-robot interaction. In Intelligent Robots and Systems,2009. IROS 2009. IEEE/RSJ International Conference on, pages 5495-5502. IEEE, 2009.Google Scholar

  • [75] M. Turk and A. Pentland. Eigenfaces for Recognition. Journal ofCognitive Neuroscience, 3(1):71-86, 1991.Google Scholar

  • [76] V. Venkatesh, M. G. Morris, G. B. Davis, and F. D. Davis. User acceptance of information technology: Toward a unified view. MISquarterly, pages 425-478, 2003.Google Scholar

  • [77] P. Viola and M. Jones. Rapid object detection using a boosted cascade of simple features. In Proceedings of the IEEE Con-ference on Computer Vision and Pattern Recognition, volume 1, pages 511-518, 2001.Google Scholar

  • [78] M. Walters, K. Dautenhahn, S. Woods, K. Koay, R. Te Boekhorst, and D. Lee. Exploratory studies on social spaces between humans and a mechanical-looking robot. Connection Science, 18(4):429-439, 2006.Google Scholar

  • [79] M. L. Walters, K. Dautenhahn, K. L. Koay, C. Kaouri, R. Boekhorst, C. Nehaniv, I. Werry, and D. Lee. Close encounters: Spatial distances between people and a robot of mechanistic appearance. In Humanoid Robots, 2005 5th IEEE-RAS International Con-ference on, pages 450-455. IEEE, 2005.Google Scholar

  • [80] M. L. Walters, K. Dautenhahn, R. te Boekhorst, and K. L. Koay. An empirical framework for human robot proximity. In New Frontiersin Human-Robot Interaction, a symposium at the AISB2009 Convention, Heriot Watt University, 8-9 April 2009, Edin-burgh, Scotland. SSAISB.Google Scholar

  • [81] M. Weser, D. Off, and J. Zhang. Htn robot planning in partially observable dynamic environments. In Robotics and Automa-tion (ICRA), 2010 IEEE International Conference on, pages 1505-1510. IEEE, 2010.Google Scholar

  • [82] J. Wu, A. Osuntogun, T. Choudhury, M. Philipose, and J. M. Rehg. A scalable approach to activity recognition based on object use. In Computer Vision, 2007. ICCV 2007. IEEE 11th Interna-tional Conference on, pages 1-8. IEEE, 2007.Google Scholar

  • [83] J. Zhu, L. Wang, R. Yang, J. E. Davis, and Z. Pan. Reliability fusion of time-of-flight depth and stereo geometry for high quality depth maps. IEEE Transactions on Pattern Analysis and MachineIntelligence, 33(7):1400-1414, July 2011. Google Scholar

About the article

Published Online: 2013-12-10

Published in Print: 2013-12-01


Citation Information: Paladyn, Journal of Behavioral Robotics, ISSN (Print) 2081-4836, DOI: https://doi.org/10.2478/pjbr-2013-0007.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Ninghang Hu, Gwenn Englebienne, Zhongyu Lou, and Ben Krose
IEEE Transactions on Robotics, 2015, Volume 31, Number 6, Page 1472

Comments (0)

Please log in or register to comment.
Log in