Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Paladyn, Journal of Behavioral Robotics

Editor-in-Chief: Schöner, Gregor

1 Issue per year

Open Access
Online
ISSN
2081-4836
See all formats and pricing
More options …

Stochastic Diffusion Search Review

Mohammad Majid al-Rifaie / John Mark Bishop
Published Online: 2013-12-27 | DOI: https://doi.org/10.2478/pjbr-2013-0021

Abstract

Stochastic Diffusion Search, first incepted in 1989, belongs to the extended family of swarm intelligence algorithms. In contrast to many nature-inspired algorithms, stochastic diffusion search has a strong mathematical framework describing its behaviour and convergence. In addition to concisely exploring the algorithm in the context of natural swarm intelligence systems, this paper reviews various developments of the algorithm, which have been shown to perform well in a variety of application domains including continuous optimisation, implementation on hardware and medical imaging. This algorithm has also being utilised to argue the potential computational creativity of swarm intelligence systems through the two phases of exploration and exploitation.

Keywords: swarm intelligence; resource allocation; optimisation; search; information exchange

References

  • [1] al-Rifaie MM (2011) D-Art 2011: When birds and ants set off to draw. 15th International Conference Information Visualisation (iV2011, London) & 8th International Conference Computer Graphics, Imaging and Visualization (cgiv2011, Singapore) - DIGITAL ART GALLERY Google Scholar

  • [2] al-Rifaie MM (2012) Information sharing impact of stochastic diffusion search on population-based algorithms. PhD thesis, Goldsmiths, University of London Google Scholar

  • [3] al-Rifaie MM (2013) D-Art 2013: Swarmic sketches with swarmic attention. 17th International Conference Information Visualisation (iV2013, London, UK) & 10th International Conference Computer Graphics, Imaging and Visualization (cgiv2013, Macau, China) - DIGITAL ART GALLERY Google Scholar

  • [4] al-Rifaie MM, Aber A (2012) Identifying metastasis in bone scans with stochastic diffusion search. In: Information Technology in Medicine and Education (ITME), IEEE, , URL http://dx.doi. org/10.1109/ITiME.2012.6291355 CrossrefGoogle Scholar

  • [5] al-Rifaie MM, Bishop M (2013) Swarm intelligence and weak artificial creativity. In: The Association for the Advancement of Artificial Intelligence (AAAI) 2013: Spring Symposium, Stanford University, Palo Alto, California, U.S.A., pp 14–19 Google Scholar

  • [6] al-Rifaie MM, Bishop M (2013) Swarmic paintings and colour attention. In: Machado P, McDermott J, Carballal A (eds) Evolutionary and Biologically Inspired Music, Sound, Art and Design, Lecture Notes in Computer Science, vol 7834, Springer Berlin Heidelberg, pp 97–108, , URL http://dx.doi.org/10.1007/ 978-3-642-36955-1_9 CrossrefGoogle Scholar

  • [7] al-Rifaie MM, Bishop M (2013) Swarmic sketches and attention mechanism. In: Machado P, McDermott J, Carballal A (eds) Evolutionary and Biologically Inspired Music, Sound, Art and Design, Lecture Notes in Computer Science, vol 7834, Springer Berlin Heidelberg, pp 85–96, , URL http://dx.doi.org/10.1007/ 978-3-642-36955-1_8 CrossrefGoogle Scholar

  • [8] al-Rifaie MM, Aber A, Raisys R (2011) Swarming robots and possible medical applications. In: International Society for the Electronic Arts (ISEA 2011), Istanbul, Turkey Google Scholar

  • [9] al-Rifaie MM, Bishop M, Aber A (2011) Creative or not? birds and ants draw with muscles. In: AISB 2011: Computing and Philosophy, University of York, York, U.K., pp 23–30, iSBN: 978-1- 908187-03-1 Google Scholar

  • [10] al-Rifaie MM, Bishop M, Blackwell T (2011) An investigation into the use of swarm intelligence for an evolutionary algorithm optimisation. In: International Conference on Evolutionary Computation Theory and Application (ECTA 2011), IJCCI Google Scholar

  • [11] al-Rifaie MM, Bishop MJ, Blackwell T (2011) An investigation into the merger of stochastic diffusion search and particle swarm optimisation. In: Proceedings of the 13th annual conference on Genetic and evolutionary computation, ACM, New York, NY, USA, GECCO ’11, pp 37–44, , URL http://doi.acm.org/10. 1145/2001576.2001583 Google Scholar

  • [12] al-Rifaie MM, Aber A, Oudah AM (2012) Utilising stochastic diffusion search to identify metastasis in bone scans and microcalcifications on mammographs. In: Bioinformatics and Biomedicine (BIBM 2012), Multiscale Biomedical Imaging Analysis (MBIA2012), IEEE, pp 280–287, URL http://dx.doi. org/10.1109/BIBMW.2012.6470317 CrossrefGoogle Scholar

  • [13] al-Rifaie MM, Bishop M, Blackwell T (2012) Information sharing impact of stochastic diffusion search on differential evolution algorithm. In: J. Memetic Computing, vol 4, Springer- Verlag, pp 327–338, , URL http://dx.doi.org/10.1007/ s12293-012-0094-y CrossrefGoogle Scholar

  • [14] al-Rifaie MM, Bishop M, Caines S (2012) Creativity and autonomy in swarm intelligence systems. In: J. Cognitive Computation, vol 4, Springer-Verlag, pp 320–331, , URL http://dx.doi.org/10. 1007/s12559-012-9130-y CrossrefGoogle Scholar

  • [15] al-Rifaie MM, Aber A, Oudah AM (2013) Ants intelligence framework; identifying traces of cancer. In The House of Commons, UK Parliment. SET for BRITAIN 2013. Poster exhibitions in Biological and Biomedical Science Google Scholar

  • [16] Aleksander I, Stonham T (1979) Computers and digital techniques 2(1). Lect Notes Art Int 1562 pp 29–40 Google Scholar

  • [17] Ashby W (1960) Design for a Brain. Chapman and Hall London Google Scholar

  • [18] Back T (1996) Evolutionary Algorithms in Theory and Practice. New York: Oxford University Press Google Scholar

  • [19] Beattie P, Bishop J (1998) Self-localisation in the senario autonomous wheelchair. Journal of Intellingent and Robotic Systems 22:255–267 Google Scholar

  • [20] el Beltagy MA, Keane AJ (2001) Evolutionary optimization for computationally expensive problems using gaussian processes. In: Proc. Int. Conf. on Artificial Intelligence’01, CSREA Press, pp 708–714 Google Scholar

  • [21] Birchfield S (1998) Elliptical head tracking using intensity gradients and color histograms. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Citeseer, pp 232–237 Google Scholar

  • [22] Bishop J (1989) Anarchic techniques for pattern classification. PhD thesis, University of Reading, Reading, UK Google Scholar

  • [23] Bishop J (1989) Stochastic searching networks. Proc. 1st IEE Conf. on Artificial Neural Networks, London, UK, pp 329–331 Google Scholar

  • [24] Bishop J (2003) Coupled stochastic diffusion processes. In: Proc. School Conference for Annual Research Projects (SCARP), Reading, UK, pp 185–187 Google Scholar

  • [25] Bishop J, Torr P (1992) The stochastic search network. In: Neural Networks for Images, Speech and Natural Language, Chapman & Hall, New York, pp 370–387 Google Scholar

  • [26] Bishop M, de Meyer K, Nasuto S (2002) Recruiting robots perform stochastic diffusion search. School Conference for Annual Research Projects (SCARP) Google Scholar

  • [27] Bonabeau E, Dorigo M, Theraulaz G (1999) Swarm intelligence: from natural to artificial systems. Oxford University Press, USA Google Scholar

  • [28] Bonabeau E, Dorigo M, Theraulaz G (2000) Inspiration for optimization from social insect behaviour. Nature 406:3942 Google Scholar

  • [29] Branke J, Schmidt C, Schmeck H (2001) Efficient fitness estimation in noisy environments. In Spector, L, ed: Genetic and Evolutionary Computation Conference, Morgan Kaufmann Google Scholar

  • [30] Browne C (2000) Hex Strategy: Making the right connections. AK Peters Wellesley Google Scholar

  • [31] Cant R, Langensiepen C (2009) Methods for Automated Object Placement in Virtual Scenes. In: UKSim 2009: 11th International Conference on Computer Modelling and Simulation, IEEE, pp 431–436 Google Scholar

  • [32] Chadab R, Rettenmeyer C (1975) Mass recruitment by army ants. Science 188:1124–1125 Google Scholar

  • [33] Christensen S, Oppacher F (2001) What can we learn from no free lunch? a first attempt to characterize the concept of a searchable function. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp 1219–1226 Google Scholar

  • [34] Clerc M (2010) From theory to practice in particle swarm optimization. Handbook of Swarm Intelligence pp 3–36 Google Scholar

  • [35] Coulter D, Ehlers E (2011) Cellular automata and immunity amplified stochastic diffusion search. In: Advances in Practical Multi- Agent Systems, Springer, pp 21–32 Google Scholar

  • [36] Deneubourg J, Pasteels J, Verhaeghe J (1983) Probabilistic behaviour in ants: a strategy of errors? In: Journal of Theoretical Biology, Elsevier, vol 105, pp 259–271 Google Scholar

  • [37] Digalakis J, Margaritis K (2002) An experimental study of benchmarking functions for evolutionary algorithms. International Journal 79:403–416 Google Scholar

  • [38] Dorigo M (1992) Optimization, learning and natural algorithms. PhD thesis, Milano: Politecnico di Italy Google Scholar

  • [39] Dorigo M, Maniezzo V, Colorni A (1991) Positive feedback as a search strategy. Dipartimento di Elettronica e Informatica, Politecnico di Google Scholar

  • [40] Dorigo M, Caro GD, Gambardella LM (1999) Ant algorithms for discrete optimization. Artificial Life 5(2):137–172 Google Scholar

  • [41] Evans M, Ferryman J (2005) Group stochastic search for object detection and tracking. Advanced Video and Signal Based Surveillance, 2005 AVSS 2005 IEEE Conference Google Scholar

  • [42] Fan H, Hua Z, Li J, Yuan D (2004) Solving a shortest path problem by ant algorithm. In: Machine Learning and Cybernetics, 2004. Proceedings of 2004 International Conference on, vol 5, pp 3174–3177 vol.5, Google Scholar

  • [43] Fischler MA, Bolles RC (1981) Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM 24(6):381–395 Google Scholar

  • [44] Fogel DB (1995) Evolutionary Computation: Toward a New Philosophy of Machine Intelligence. IEEE Press, Piscataway, NJ Google Scholar

  • [45] Glover F, et al (1989) Tabu search-part i. ORSA journal on Computing 1(3):190–206 Google Scholar

  • [46] Goldberg DE (1989) Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley Longman Publishing Co., Inc. Boston, MA, USA Google Scholar

  • [47] Goodman LJ, Fisher RC (1991) The Behaviour and Physiology of Bees. CAB International, Oxon, UK Google Scholar

  • [48] Grech-Cini E (1995) Locating facial features. PhD thesis, University of Reading, Reading, UK Google Scholar

  • [49] Hernandez-Carrascal A, Nasuto S (2008) A swarm intelligence method for feature tracking in amv derivation. Ninth International Wind Workshop Google Scholar

  • [50] Hinton GF (1981) A parallel computation that assigns canonical object-based frames of reference. In: Proceedings of the 7th international joint conference on Artificial intelligence-Volume 2, Morgan Kaufmann Publishers Inc., pp 683–685 Google Scholar

  • [51] Holland JH (1975) Adaptation in natural and artificial systems. Ann Arbor, MI, University of Michigan press Google Scholar

  • [52] Holldobler B, Wilson EO (1990) The Ants. Springer-Verlag Google Scholar

  • [53] Hughes R (2012) Stochastic diffusion search with reinforcement learning. In: Proc. School Conference for Annual Research Projects (SCARP), Reading, UK Google Scholar

  • [54] Jin Y (2005) A comprehensive survey of fitness approximation in evolutionary computation. In: Soft Computing 9:3–12 CrossrefGoogle Scholar

  • [55] Jin Y, Branke J (2005) Evolutionary optimization in uncertain environments-a survey. Evolutionary Computation, IEEE Transactions on 9(3):303–317 Google Scholar

  • [56] Jones D (2002) Constrained stochastic diffusion search. Proc School Conference for Annual Research Projects (SCARP) 2002, Reading, UK Google Scholar

  • [57] Kennedy J, Eberhart RC (1995) Particle swarm optimization. In: Proceedings of the IEEE International Conference on Neural Networks, IEEE Service Center, Piscataway, NJ, vol IV, pp 1942–1948 Google Scholar

  • [58] Kemeny, J.G. & Snell, J.L., (1976), Finite Markov Chains, New York: Springer-Verlag. Google Scholar

  • [59] Kennedy JF, Eberhart RC, Shi Y (2001) Swarm intelligence. Morgan Kaufmann Publishers, San Francisco ; London Google Scholar

  • [60] Kirkpatric S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220(4598):671–680 Google Scholar

  • [61] Knuth DE (1973) The art of computer programming. Vol. 3, Sorting and Searching. Addison-Wesley Reading, MA Google Scholar

  • [62] Krieger MJ, Billeter JB, Keller L (2000) Ant-like task allocation and recruitment in cooperative robots. Nature 406(6799):992–5 Google Scholar

  • [63] Levins R (1969) Some demographic and genetic consequences of environmental heterogeneity for biological control. Bulletin of the ESA 15(3):237–240 Google Scholar

  • [64] Li SW, Zhang J (2012) Cellular sds algorithm for the rectilinear steiner minimum tree. In: Digital Manufacturing and Automation (ICDMA), 2012 Third International Conference on, IEEE, pp 272–276 Google Scholar

  • [65] Liu Y, Ma L (2011) Stochastic diffusion search algorithm for quadratic knapsack problem. Control Theory & Applications 28(8):1140–1144 Google Scholar

  • [66] McClelland JL, Rumelhart DE, Group PR, et al (1986) Parallel distributed processing. Explorations in the microstructure of cognition 2 Google Scholar

  • [67] de Meyer K (2000) Explorations in stochastic diffusion search: Soft- and hardware implementations of biologically inspired spiking neuron stochastic diffusion networks. Tech. Rep. KDM/ JMB/2000/1, University of Reading Google Scholar

  • [68] de Meyer K (2000) Explorations in stochastic diffusion search: Soft-and hardware implementations of biologically inspired spiking neuron stochastic diffusion networks. Tech. rep., Technical Report KDM/JMB/2000 Google Scholar

  • [69] de Meyer K (2003) Foundations of stochastic diffusion search. PhD thesis, PhD thesis, University of Reading, Reading, UK Google Scholar

  • [70] de Meyer K, Bishop M, Nasuto S (2002) Small world effects in lattice stochastic diffusion search. In: Proc. ICANN 2002, Lecture Notes in Computer Science, 2415, Madrid, Spain, pp 147–152 Google Scholar

  • [71] de Meyer K, Bishop JM, Nasuto SJ (2003) Stochastic diffusion: Using recruitment for search. Evolvability and interaction: evolutionary substrates of communication, signalling, and perception in the dynamics of social complexity (ed P McOwan, K Dautenhahn & CL Nehaniv) Technical Report 393:60–65 Google Scholar

  • [72] de Meyer K, Nasuto S, Bishop J (2006) Stochastic diffusion optimisation: the application of partial function evaluation and stochastic recruitment in swarm intelligence optimisation. Springer Verlag 2, Chapter 12 in Abraham, A. and Grosam, C. and Ramos, V. (eds), ”Swarm intelligence and data mining” Google Scholar

  • [73] Miller MB, Bassler BL (2001) Quorum sensing in bacteria. Annual Reviews in Microbiology 55(1):165–199 Google Scholar

  • [74] Mitchell M (1996) An introduction to genetic algorithms, 1996. MIT press Google Scholar

  • [75] Moglich M, Maschwitz U, Holldobler B (1974) Tandem calling: A new kind of signal in ant communication. Science 186(4168):1046–1047 Google Scholar

  • [76] Morciniec M, Rohwer R (1995) The n-tuple classifier: Too good to ignore. Tech. Rep. Technical Report NCRG/95/013 Google Scholar

  • [77] Myatt D, Bishop J (2003) Data driven stochastic diffusion networks for robust high-dimensionality manifold estimation - more fun than you can shake a hyperplane at. In: Proc. School Conference for Annual Research Projects (SCARP), Reading, UK Google Scholar

  • [78] Myatt D, Nasuto S, Bishop J (2006) Alternative recruitment strategies for stochastic diffusion search. Artificial Life X, Bloomington USA Google Scholar

  • [79] Myatt DR, Bishop JM, Nasuto SJ (2004) Minimum stable convergence criteria for stochastic diffusion search. Electronics Letters 40(2):112–113 CrossrefGoogle Scholar

  • [80] Nasuto S, Bishop M (2007) Stabilizing swarm intelligence search via positive feedback resource allocation. In: Nature Inspired Cooperative Strategies for Optimization (NICSO), Springer Google Scholar

  • [81] Nasuto SJ (1999) Resource allocation analysis of the stochastic diffusion search. PhD thesis, University of Reading, Reading, UK Google Scholar

  • [82] Nasuto SJ, Bishop JM (1999) Convergence analysis of stochastic diffusion search. Parallel Algorithms and Applications 14(2) Google Scholar

  • [83] Nasuto SJ, Bishop MJ (2002) Steady state resource allocation analysis of the stochastic diffusion search. Arxiv preprint cs/0202007 Google Scholar

  • [84] Nasuto SJ, Bishop JM, Lauria S (1998) Time complexity analysis of stochastic diffusion search. Neural Computation NC98 Google Scholar

  • [85] Nasuto SJ, Dautenhahn K, Bishop J (1999) Communication as an emergent methaphor for neuronal operation. Lect Notes Art Int 1562 pp 365–380 Google Scholar

  • [86] Nircan A (2006) Stochastic diffusion search and voting methods. PhD thesis, Bogaziki University Google Scholar

  • [87] Omran M, Moukadem I, al-Sharhan S, Kinawi M (2011) Stochastic diffusion search for continuous global optimization. International Conference on Swarm Intelligence (ICSI 2011), Cergy, France Google Scholar

  • [88] Omran MG, Salman A (2012) Probabilistic stochastic diffusion search. In: Swarm Intelligence, Springer, pp 300–307 Google Scholar

  • [89] Rubinstein RY, Kroese DP (2004) The cross-entropy method: a unified approach to combinatorial optimization, Monte-Carlo simulation and machine learning. Springer Verlag Google Scholar

  • [90] Salamanos N, Lopatatzidis S, Vazirgiannis M, Thomas A (2010) Advertising network formation based on stochastic diffusion search and market equilibria. In: Proceedings of the 28th ACM International Conference on Design of Communication, ACM, pp 81–87 Google Scholar

  • [91] Saxe JG, Lathen D, Chief B (1882) The Blind Man and the Elephant. The Poems of John Godfrey Saxe Google Scholar

  • [92] Seeley TD (1995) The Wisdom of the Hive. Harvard University Press Google Scholar

  • [93] Storn R, Price K (1997) Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces. J Global Optim 11:341–359 CrossrefGoogle Scholar

  • [94] Summers R (1998) Stochastic diffusion search: A basis for a model of visual attention? Google Scholar

  • [95] Tanay T, Bishop J, Nasuto S, Roesch E, Spencer M (2013) Stochastic diffusion search applied to trees: a swarm intelligence heuristic performing monte-carlo tree search. In: Proc AISB 2013, University of Exeter, UK Google Scholar

  • [96] Tompa M (2000) Lecture notes on biological sequence analysis. Dept of Comp Sci and Eng, University of Washington, Seattle, Technical report Google Scholar

  • [97] Whitaker R, Hurley S (2002) An agent based approach to site selection for wireless networks. In: 1st IEE Conf. on Artificial Neural Networks, ACM Press Proc ACM Symposium on Applied Computing, Madrid Spain Google Scholar

  • [98] Whitley D, Rana S, Dzubera J, Mathias KE (1996) Evaluating evolutionary algorithms. Artificial Intelligence 85(1-2):245–276Google Scholar

About the article

Published Online: 2013-12-27

Published in Print: 2013-12-27


Citation Information: Paladyn, Journal of Behavioral Robotics, ISSN (Print) 2081-4836, DOI: https://doi.org/10.2478/pjbr-2013-0021.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Sung-Soo Kim, Sean McLoone, Ji-Hwan Byeon, Seokcheon Lee, and Hongbo Liu
Cognitive Computation, 2017, Volume 9, Number 2, Page 207
[2]
Mohammad Majid al-Rifaie, Arthur Cropley, David Cropley, and Mark Bishop
Connection Science, 2016, Volume 28, Number 2, Page 171
[3]
Howard Williams and Mark Bishop
Algorithms, 2014, Volume 7, Number 2, Page 206

Comments (0)

Please log in or register to comment.
Log in