Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Paladyn, Journal of Behavioral Robotics

Editor-in-Chief: Schöner, Gregor

1 Issue per year

Open Access
Online
ISSN
2081-4836
See all formats and pricing
More options …

Multiattribute Utility Copulas for Multi-objective Coverage Control

Christopher G. Valicka
  • Coordinated Science Laboratory, University of Illinois, 1308 W. Main Street, Urbana, IL 61801, USA
  • Department of Industrial and Enterprise Systems Engineering, University of Illinois, 117 Transportation Bldg., 104 S. Mathews Ave., Urbana, IL, 61801 USA
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Richard A. Rekoske
  • Coordinated Science Laboratory, University of Illinois, 1308 W. Main Street, Urbana, IL 61801, USA
  • Department of Industrial and Enterprise Systems Engineering, University of Illinois, 117 Transportation Bldg., 104 S. Mathews Ave., Urbana, IL, 61801 USA
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Dušan M. Stipanovic
  • Coordinated Science Laboratory, University of Illinois, 1308 W. Main Street, Urbana, IL 61801, USA
  • Department of Industrial and Enterprise Systems Engineering, University of Illinois, 117 Transportation Bldg., 104 S. Mathews Ave., Urbana, IL, 61801 USA
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ali E. Abbas
  • Coordinated Science Laboratory, University of Illinois, 1308 W. Main Street, Urbana, IL 61801, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-05-30 | DOI: https://doi.org/10.2478/pjbr-2014-0002

Abstract

This paper presents theoretical and experimental results related to the control and coordination of multirobot systems interested in dynamically covering a compact domain while remaining proximal, so as to promote robust inter-robot communications, and while remaining collision free with respect to each other and static obstacles. A design for a novel, gradient-based controller using nonnegative definite objective functions and an overapproximation to the maximum function is presented. By using a multiattribute utility copula to scalarize the multiobjective control problem, a control law is presented that allows for flexible tuning of the tradeofs between objectives. This procedure mitigates the controller’s dependence on objective function parameters and allows for the straightforward integration of a novel global coverage objective. Simulation and experiments demonstrate the controller’s efectiveness in promoting scenarios with collision free trajectories, robust communications, and satisfactory coverage of the entire coverage domain concurrently for a group of differential drive robots.

Keywords : multiobjective control; multiattribute utility copulas; dynamic coverage; differential drive robots

References

  • [1] J. Cortes, S. Martinez, T. Karatas, and F. Bullo. Coverage control for mobile sensing networks. IEEE Transactions on Robotics and Automation, 2004.Google Scholar

  • [2] Sonia Martínez and Francesco Bullo. Optimal sensor placement and motion coordination for target tracking. Automatica, 2006.Google Scholar

  • [3] C. Franco, G. López-Nicolás, Dušan M. Stipanovic, and C. Sagüés. Anisotropic vision-based coverage control for mobile robots. In ViCoMoR, October 2012.Google Scholar

  • [4] Rafael Fierro, Aveek Das, John Spletzer, Joel Esposito, Vijay Kumar, James P Ostrowski, George Pappas, Camillo J Taylor, Yerang Hur, Rajeev Alur, Insup Lee, Greg Grudic, and B Southall. A framework and architecture for multi-robot coordination. The International Journal of Robotics Research, 21(10-11):977-995, 2002.Google Scholar

  • [5] Naomi Ehrich Leonard and Edward Fiorelli. Virtual leaders, arti_cal potentials, and coordinated control of groups. In Proceedings of the 40th IEEE Conference on Decision and Control, volume 3, pages 2968-2973. IEEE, 2001.Google Scholar

  • [6] Petter Ogren, Edward Fiorelli, and Naomi Ehrich Leonard. Cooperative control of mobile sensor networks: Adaptive gradient climbing in a distributed environment. IEEE Transactions on Automatic Control, 49(8), 2004.Google Scholar

  • [7] Reza Olfati-Saber and Richard M. Murray. Distributed cooperative control of multiple vehicle formations using structural potential functions. In IFAC World Congress, pages 346-352, 2002.Google Scholar

  • [8] Silvia Mastellone, Dušan M. Stipanovic, Christopher R.Graunke, Koji A. Intlekofer, and Mark W. Spong. Formation control and collision avoidance for multi-agent non-holonomic systems: Theory and experiments. The International Journal of Robotics Research, 27(1):107-126, 2008.CrossrefWeb of ScienceGoogle Scholar

  • [9] E.J. Rodríguez-Seda, J.J. Troy, C.A. Erignac, P. Murray, Dušan M.Stipanovic, and M.W. Spong. Bilateral teleoperation of multiple mobile agents: Coordinated motion and collision avoidance.IEEE Transactions on Control Systems Technology, 2009.Web of ScienceGoogle Scholar

  • [10] D.E. Chang, S.C. Shadden, J.E. Marsden, and R. Olfati-Saber.Collision avoidance for multiple agent systems. In IEEE Conference on Decision and Control, pages 539-543, 2003.Google Scholar

  • [11] Daniel E. Soltero, S.L. Smith, and D. Rus. Collision avoidance for persistent monitoring in multi-robot systems with intersecting trajectories. In IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 3645-3652, 2011.Google Scholar

  • [12] Jur Berg, StephenJ. Guy, Ming Lin, and Dinesh Manocha. Reciprocal n-body collision avoidance. In Cédric Pradalier, Roland Siegwart, and Gerhard Hirzinger, editors, Robotics Research, volume 70 of Springer Tracts in Advanced Robotics, pages 3-19. Springer Berlin Heidelgberg, 2011.Google Scholar

  • [13] Daniel Hennes, Daniel Claes, Wim Meeussen, and Karl Tuyls.Multi-robot collision avoidance with localization uncertainty.In Conitzer, Winiko_, Padgham, and van der Hoek, editors, Proceedings of the 11th International Conference on Autonomous Agents and Multiagent Systems, pages 147-154, 2012.Google Scholar

  • [14] Dušan M. Stipanovic, Peter F. Hokayem, Mark W. Spong, and Dragoslav D. Šiljak. Cooperative avoidance control for multiagent systems. Journal of Dynamic Systems, Measurement, and Control, 129:699-707, September 2007.Web of ScienceGoogle Scholar

  • [15] Erick J. Rodriguez-Seda, Dusan M. Stipanovic, and Mark W.Spong. Lyapunov-based cooperative avoidance control for multiple lagrangian systems with bounded sensing uncertainties.In CDC-ECE, pages 4207-4213, 2011.Google Scholar

  • [16] Aveek K Das, Rafael Fierro, Vijay Kumar, James P Ostrowski, John Spletzer, and Camillo J Taylor. A vision-based formation control framework. IEEE Transactions on Robotics and Automation, 18(5):813-825, 2002.Web of ScienceGoogle Scholar

  • [17] Reza Olfati-Saber. Flocking for multi-agent dynamic systems: Algorithms and theory. IEEE Transactions on Automatic Control, 51(3):401-420, 2006.CrossrefGoogle Scholar

  • [18] Dušan M. Stipanovic, Christopher Valicka, Claire J. Tomlin, and Thomas R. Bewley. Safe and reliable coverage control.Numerical Algebra, Control and Optimization, 3(1):31-48, 2013.Google Scholar

  • [19] Fabio Pasqualetti, Antonio Franchi, and Francesco Bullo. On optimal cooperative patrolling. In 49th IEEE Conference on Decision and Control, pages 7153-7158, 2010.Google Scholar

  • [20] Noa Agmon, Chien-Liang Fok, Yehuda Emaliah, Peter Stone, Christine Julien, and Sriram Vishwanath. On coordination in practical multi-robot patrol. In Proceedings of the International Conference on Robotics and Automation, pages 650-656, 2012.Google Scholar

  • [21] David Portugal and Rui P. Rocha. Distributed multi-robot patrol: A scalable and fault-tolerant framework. Robotics and Autonomous Systems, 61:1572-1587, 2013.Web of ScienceGoogle Scholar

  • [22] Yi Guo and M. Balakrishnan. Complete coverage control for nonholonomic mobile robots in dynamic environments. In IEEE International Conference on Robotics and Automation, pages 1704-1709, 2006.Google Scholar

  • [23] Howie Choset. Coverage of known spaces: The boustrophedon cellular decomposition. Autonomous Robots, 9(3):247-253, 2000.CrossrefGoogle Scholar

  • [24] Islam I. Hussein and Dušan M. Stipanovic. E_ective coverage control for mobile sensor networks with guaranteed collision avoidance. IEEE Transactions on Control Systems Technology, 15(4):642-657, 2007.Web of ScienceGoogle Scholar

  • [25] Nico Hubel, Sandra Hirche, Azwirman Gusrialdi, Takeshi Hatanaka, Masayuki Fujita, and Oliver Sawodny. Coverage control with information decay in dynamic environments. In 17th IFAC World Congress, pages 4180-4185, 2008.Google Scholar

  • [26] Stephen L. Smith, Mac Schwager, and Daniela Rus. Persistent robotic tasks: Monitoring and sweeping in changing environments.IEEE Transactions on Robotics, 28(2):410-426, 2012.Web of ScienceGoogle Scholar

  • [27] W. Burgard, M. Moors, C. Stachniss, and F.E. Schneider. Coordinated multi-robot exploration. IEEE Transactions on Robotics, pages 376-386, 2005.Google Scholar

  • [28] Nathan Michael, D. Mellinger, Q. Lindsey, and Vijay Kumar.The grasp multiple micro-uav testbed. IEEE Robotics Automation Magazine, 17(3):56-65, 2010.CrossrefGoogle Scholar

  • [29] Jian Chen, Dong Sun, Jie Yang, and Haoyao Chen. Leaderfollower formation control of multiple non-holonomic mobile robots incorporating a receding-horizon scheme. The International Journal of Robotics Research, 29(6):727-747, 2010.CrossrefWeb of ScienceGoogle Scholar

  • [30] R. Fieero, A.K. Das, Vijay Kumar, and J.P. Ostrowski. Hybrid control of formations of robots. In IEEE International Conference on Robotics and Automation, volume 1, pages 157-162, 2001.Google Scholar

  • [31] Michael Nathan, J. Fink, and Vijay Kumar. Experimental testbed for large multirobot teams. IEEE Robotics Automation Magazine, 15(1):53-61, 2008.Web of ScienceCrossrefGoogle Scholar

  • [32] Brian Smith, Ayanna Howard, John-Michael McNew, Jiuguang Wang, and Magnus Egerstedt. Multi-robot deployment and coordination with embedded graph grammars. Autonomous Robots, 26(1):79-98, 2009.CrossrefWeb of ScienceGoogle Scholar

  • [33] L. Cremean, W.B. Dunbar, D. van Gogh, J. Hickey, J. Meltzer, and R.M. Murray. The caltech multi-vehicle wireless testbed.In Proceedings of the 41st IEEE Conference on Decision and Control, pages 86-88, 2002.Google Scholar

  • [34] B. P. Gerkey and M.J. Mataric. Sold!: Aution methods for multirobot coordination. IEEE Transactions on Robotics and Automation, 18(5):758-768, 2002.CrossrefGoogle Scholar

  • [35] Ali E. Abbas. Multiattribute utility copulas. Operations Research, 57(6):1367-1383, November-December 2009.Google Scholar

  • [36] Roger B. Nelsen. An Introdcution to Copulas. Springer, 2nd edition, 2006.Google Scholar

  • [37] Roland Siegwart and Illah R. Nourbakhsh. Introduction to Autonomous Mobile Robots. Bradford Company, Scituate, MA, USA, 2004. [38] Dušan M. Stipanovic, Claire J. Tomlin, and George Leitmann.Monotone approximations of minimum and maximum functions and multi-objective problems. Applied Mathematics and Optimization, 66(3):455-473, 2012.Google Scholar

  • [39] V. Lakshmikantham and S. Leela. Di_erential and Integral Inequalities: Theory and Applications. Academic Press, New York, NY, 1969.Google Scholar

  • [40] V. V. Filippov. Basic Topological Structures of Ordinary Di_erential Equations. Kluwer Academic Publishers, Dordrecht, The Netherlands, 1998. Google Scholar

About the article

Received: 2014-01-14

Accepted: 2014-05-18

Published Online: 2014-05-30


Citation Information: Paladyn, Journal of Behavioral Robotics, ISSN (Online) 2081-4836, DOI: https://doi.org/10.2478/pjbr-2014-0002.

Export Citation

© Christopher G. Valicka et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in