Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Paladyn, Journal of Behavioral Robotics

Editor-in-Chief: Schöner, Gregor

1 Issue per year

Open Access
Online
ISSN
2081-4836
See all formats and pricing
More options …

A Walking Training System with Customizable Trajectory Designing

Shiyang Dong
  • Graduate School of Information, Production and Systems, Waseda University, Kitakyushu, 808-0135, Japan
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Takafumi Matsumaru
  • Graduate School of Information, Production and Systems, Waseda University, Kitakyushu, 808-0135, Japan
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-06-24 | DOI: https://doi.org/10.2478/pjbr-2014-0003

Abstract

This paper shows a novel walking training system for foot-eye coordination. To design customizable trajectories for different users conveniently in walking training, a new system which can track and record the actual walking trajectories by a tutor and can use these trajectories for the walking training by a trainee is developed. We set the four items as its human-robot interaction design concept: feedback, synchronization, ingenuity and adaptability. A foot model is proposed to define the position and direction of a foot. The errors in the detection method used in the system are less than 40 mm in position and 15 deg in direction. On this basis, three parts are structured to achieve the system functions: Trajectory Designer, Trajectory Viewer and Mobile Walking Trainer. According to the experimental results,we have confirmed the systemworks as intended and designed such that the steps recorded in Trajectory Designer could be used successfully as the footmarks projected in Mobile Walking Trainer and foot-eye coordination training would be conducted smoothly.

Keywords : Walking Training System; Foot-eye Coordination; Human-robot Interaction; Mobile Robot; Step-on Interface; Customizable Trajectory Designing; Foot Model; Lower-limb Rehabilitation

References

  • [1] The Japan Stroke Society: Guidelines for Stroke Therapy 2009, 2009. Retrieved April 25, 2014 from http://www.jsts. gr.jp/main08a.html (in Japanese) Google Scholar

  • [2] H.H. Mikaelian. Adaptation to rearranged eye-foot coordination. Perception & Psychophysics, 8(4):222-224, Jul 1970. CrossrefGoogle Scholar

  • [3] M.A. Hollands and D.E. Marple-Horvat. Coordination of Eye and Leg Movements During Visually Guided Stepping. Journal of Motor Behavior, 33(2):205-216, 2001. Google Scholar

  • [4] D.S. Marigold and J.E. Misiaszek. Whole-Body Responses: Neural Control and Implications for Rehabilitation and Fall Prevention. The Neuroscientist, 15(1):36-46, Feb 2009. PubMedGoogle Scholar

  • [5] T. Matsumaru. Operating device. Japan Patent P2008- 006551A, Jan 2008. (in Japanese) Google Scholar

  • [6] M.C. Kosak and M.J. Reding. Comparison of Partial Body Weight-Supported Treadmill Gait Training Versus Aggressive Bracing Assisted Walking Post Stroke. Neurorehabiltation & Neural Repair, 14(1):13-19, Mar 2000. Google Scholar

  • [7] M. Ochi, K. Makino, F. Wada, S. Saeki and K. Hachisuka. A Walker with a Device of Partial Suspension for Patients with Gait Disturbance: Body Weight Supported Walker. Journal of UOEH, 31(3): 259-263, 2009. PubMedGoogle Scholar

  • [8] Mitsubishi Electric Engineering Company: Strength Ergo, 2012. Available at http://www.mee.co.jp/sales/other/ strengthergo/ (in Japanese) Google Scholar

  • [9] K. Abe, Y. Asai, Y. Matsuo, T. Nomura, S. Sato, S. Inoue, I. Mizukura, S. Sakoda. Classifying lower limb dynamics in Parkinson’s disease. Brain Research Bulletin, 61(2):219-226, July 2003. CrossrefGoogle Scholar

  • [10] W.E. Ichinose, D.J. Reinkensmeyer, D. Aoyagi, J.T. Lin, K. Ngai, V.R. Edgerton, S.J. Harkem, J.E. Bobrow. A Robotic Device for Measuring and Controlling Pelvic Motion during Locomotor Rehabilitation. 25th Annual Int’l Conf. of IEEE EMBS, 1690- 1693, Cancun, Mexico, Sept 2003. Google Scholar

  • [11] D. Aoyagi, W-E. Ichinose, S-J. Harkema, D-J. Reinkensmeyer, JE. Bobrow. An Assistive Robotic Device that Can Synchronize to the Pelvic Motion during Human Gait Training. Proc. of 2005 IEEE 9th Int’l Conf. on Rehabilitation Robotics, 565-568, Chicago, USA, June 2005. Google Scholar

  • [12] D. Aoyagi, W-E. Ichinose, S-J. Harkema, D-J. Reinkensmeyer, J-E. Bobrow. A robot and control algorithm that can synchronously assist in naturalistic motion during body-weightsupported gait training following neurologic injury. IEEE Trans on Neural Systems and Rehabilitation Engineering, 15(3):387- 400, Sep 2007. Google Scholar

  • [13] G. Colombo, M. Wirz and V. Dietz. Driven gait orthosis for improvement of locomotor training in paraplegic patients. Spinal Cord, 39:252-255, 2001. CrossrefGoogle Scholar

  • [14] M. Wirz, D-H. Zemon, R. Rupp, A. Scheel, G. Colombo, V. Dietz and T-G. Hornby. Effectiveness of automated locomotor training in patients with chronic incomplete spinal cord injury: A multicenter trial. Archives of Physical Medicine and Rehabilitation, 86(4):672-680, April 2005. Google Scholar

  • [15] J. Hidler, W. Wisman, N. Neckel. Kinematic trajectories while walking within the Lokomat robotic gait-orthosis. Clinical Biomechanics, 23(10): 1251-1259, Dec 2008. CrossrefGoogle Scholar

  • [16] S. Freivogel, J. Mehrholz, T. H.-Sotomayor, D. Schmalohr. Gait training with the newly developed 'LokoHelp'-system is feasible for non-ambulatory patients after stroke, spinal cord and brain injury. A feasibility study. Brain Injury, 22 (7-8):625- 632, Jul 2008. CrossrefGoogle Scholar

  • [17] S. Freivogel, D. Schmalohr, J. Mehrholz. Improved Ability and Reduced Therapeutic Stress with an Electromechanical Gait Device. Journal of Rehabilitation Medicine, 41(9): 734-739, Sept 2009. CrossrefGoogle Scholar

  • [18] J. Mehrholz, M. Pohl. Electromechanical-assisted gait training after stroke: a systematic review comparing end-effector and exoskeleton devices. Journal of Rehabilitation Medicine, 44(3):193-199, Mar 2012. CrossrefGoogle Scholar

  • [19] M. Guihard and P. Gorce. Biorobotic foot model applied to BIPMAN robot. In 2004 IEEE Int’l Conf on Systems, Man and Cybernetics. 7:6491-6496, Netherland, Oct 2004. Google Scholar

  • [20] M. Lindstrom and J-O. Eklundh. Detecting and Tracking Moving Objects from a Mobile Platform using a Laser Range Scanner. In Proc. 2001 IEEE/RSJ Int’l Conf. on Intelligent Robots and Systems, 3:1364-1369, Hawaii, Oct 2001. Google Scholar

  • [21] A. Fod, A. Howard and M.A.J Mataric. A Laser-Based People Tracker. In Proc. IEEE Int’l Conf. on Robotics and Automation, 2002 (ICRA ’02), 3:3024-3029, Washington DC, May 2002. Google Scholar

  • [22] H. Zhao and R. Shibasaki. A Novel System for Tracking Pedestrians Using Multiple Single-Row Laser-Range Scanners. IEEE Trans on Systems, Man and Cybernetics, Part A: Systems and Humans, 35(2): 283-291, Mar 2005. Google Scholar

  • [23] P. Kondaxakis, S. Kasderidis and P. Trahanias. A Multi-Target Tracking Technique for Mobile Robots using a Laser Range Scanner. In Proc. 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, Nice, 3370-3377, Sept 2008. Google Scholar

  • [24] J. Xavier, M. Pacheco, D. Castro, A. Ruano and U. Nunes. Fast Line, Arc/Circle and Leg Detection from Laser Scan Data in a Player Driver. Proc. of 2005 IEEE Int’l Conf. on Robotics and Automation, 2005 (ICRA 2005), 3930-3935, Barcelona, Apr 2005. Google Scholar

  • [25] J.L.Martinez, A. Pozo-Ruz, S.Pedraza and R. Fernandez. Object Following and Obstacle Avoidance Using a Laser Scanner in the Outdoor Mobile Robot Auriga-α. In Proc. 1998 IEEE/RSJ Int’l Conf. on Intelligent Robots and Systems, 1:204-209, Victoria BC, Oct 1998. Google Scholar

  • [26] W. Chung, H. Kim, Y. Yoo, C.-B. Moon and J. Park. The Detection and Following of Human Legs Through Inductive Approaches for a Mobile Robot With a Single Laser Range Finder. IEEE Trans on Industrial Electronics, 59(8): 3156-3166, Aug 2012. Google Scholar

  • [27] D.M.J. Tax and R.P.W. Duin. Support vector domain description. Pattern Recognition Letters, 20(11 -13): 1191-1199, 1999. Google Scholar

  • [28] M. Terashima and S. Sakane. A Human-Robot Interface Using an Extended Digital Desk. Proc. IEEE Int’l Conf. on Robotics and Automation 1999 (ICRA ’99), 4:2874-2880, Detroit, USA, May 1999. Google Scholar

  • [29] S. Sato and S. Sakane. A human-robot interface using an interactive hand pointer that projects a mark in the real work space. Proc. IEEE Int’l Conf. on Robotics and Automation 2000 (ICRA ’00), San Francisco, CA, 1:589-595, Apr 2000. Google Scholar

  • [30] T. Machino, S. Iwaki, H. Kawata, Y. Yanagihara, Y. Nanjo, and K. Shimokura. Remote-Collaboration System using Mobile Robot with Camera and Projector. Proc. IEEE Int. Conf. on Robotics and Automation, 2006 (ICRA 2006), 4063-4068, Orlamnd, USA, May 2006. Google Scholar

  • [31] Y. Nakamura, T. Machino, M. Motegi, Y. Iwata, T. Miyamoto, S. Iwaki, S. Muto and K. Shimokura. Framework and service allocation for network robot platform and execution of interdependent services. Robotics and Autonomous Systems, 56(10):793-797, Oct 2008. Google Scholar

  • [32] G. Reinhart, W. Vogl, and I. Kresse, Projection-based User Interface for Industrial Robots. IEEE Symp. on Virtual Environments, Human-Computer Interfaces and Measurement Systems 2007 (VECIMS 2007), 67-71, Ostuni, Italy, Jun 2007. Google Scholar

  • [33] G. Reinhart, U. Munzert, and W. Vogl, A programming system for robot-based remote-laser-welding with conventional optics. CIRP Annals – Manufacturing Technology, 57(1):37-40, Mar 2008. CrossrefGoogle Scholar

  • [34] K. Hosoi, V. N. Dao, A. Mori, and M. Sugimoto. VisiCon: a robot control interface for visualizing manipulation using a handheld projector. Proc. of Int. Conf. on Advances in Computer Entertainment Technology (ACE 2007), 99-106, Salzburg, Austria, Jun 2007 Google Scholar

  • [35] K. Hosoi, V. N. Dao, A. Mori, and M. Sugimoto. CoGAME: Manipulation using a Handheld Projector. 34th Int. Conf. and Exhibition on Computer Graphics and Interactive Techniques (SIGGRAPH 2007) Emerging Technologies, No.2, San Diego, CA, Aug 2007. Google Scholar

  • [36] T. Matsumaru. Mobile Robot with Preliminary-announcement and Display Function of Forthcoming Motion using Projection Equipment. 15th IEEE Int. Symp. on Robot and Human Interactive Communication (RO-MAN 06), 443-450, Hatfield, UK, Sept 2006. Google Scholar

  • [37] J. Park and G. J. Kim. Robots with projectors: an alternative to anthropomorphic HRI. Proc. of 4th ACM/IEEE Int. Conf. on Human robot interaction (HRI 2009), 221-222, San Diego, CA, Mar 2009. Google Scholar

  • [38] T. Matsumaru. A Characteristics Measurement of Two- Dimensional Range Scanner and its Application. The Open Automation and Control Systems Journal, 2:21-30, May 2009. Google Scholar

  • [39] T. Matsumaru and K. Akai. Functions of Mobile-Robot Step- On Interface. Journal of Robotics and Mechatronics, 21(2): 267-276, Apr 2009. Google Scholar

  • [40] T. Matsumaru and K. Akai. Step-On Interface on Mobile Robot to Operate by Stepping on Projected Button. The Open Automation and Control Systems Journal, 2: 85-95, Nov 2009 Google Scholar

  • [41] T. Matsumaru, Y. Horiuchi, K. Akai and Y. Ito. Truly-Tender- Tailed Tag-Playing Robot Interface through Friendly Amusing Mobile Function. Journal of Robotics and Mechatronics, 22(3):301-307, Jun 2010. Google Scholar

  • [42] T. Matsumaru, W. Saito and Y. Ito. User-Robot Interaction based on Mobile Robot Step-On Interface. Trans of the Virtual Reality Society of Japan, 15(3): 335-345, May 2010. (in Japanese) Google Scholar

  • [43] T. Matsumaru. Friendly Amusing Mobile Function for Human- Robot Interaction. In Proc. 19th IEEE Int’l Symp on Robot and Human Interactive Communication (RO-MAN 10), 88 -93, Viareggio, Sep 2010. Google Scholar

  • [44] D. Norman. The Psychology of Everyday Things. Basic Books, New York, NY, USA, 1988. Google Scholar

  • [45] C. Crawford. The Art of Computer Game Design : Reflections of A Master Game Designer. Osborne/Mcgraw-Hill, Berkeley, CA, USA, 1984. Google Scholar

  • [46] Moog Animatics. SM23165D - SmartMotor. Retrieved April 25, 2014 from http://www.animatics.com/products/smartmotor/ Google Scholar

  • [47] Micro Solution Co., Ltd. G-PL021X - Super mobile LED projector. Retrieved April 25, 2014 from http://www.taxanprojector. jp/pastproduct/kg_pl021x/ (in Japanese) Google Scholar

  • [48] Hokuyo Automatic. URG-04LX-UG01 - Scanning range finder (SOKUIKI sensor). Retrieved April 25, 2014 from http://www. hokuyo-aut.jp/02sensor/07scanner/download/products/ urg-04lx-ug01/ Google Scholar

  • [49] J.F. Kenney. Curve Fitting. Chapter VII in Mathematics of Statistics Part I. Chapman & Hall Ltd.Princeton, 130-158, 1939. Google Scholar

  • [50] E.W. Weisstein. Least Squares Fitting. Wolfram MathWorld. Retrieved April 25, 2014 from http://mathworld.wolfram.com/ LeastSquaresFitting.html Google Scholar

  • [51] G. Campion and W. Chung. Wheeled Robots. In B. Siciliano and O. Khatib (eds.) Springer Handbook of Robotics. 407, Springer, Berlin, Germany, 2008.Google Scholar

About the article

Received: 2013-06-25

Accepted: 2014-05-20

Published Online: 2014-06-24


Citation Information: Paladyn, Journal of Behavioral Robotics, ISSN (Online) 2081-4836, DOI: https://doi.org/10.2478/pjbr-2014-0003.

Export Citation

© Shiyang Dong and Takafumi Matsumaru. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in