Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Paladyn, Journal of Behavioral Robotics

Editor-in-Chief: Schöner, Gregor

1 Issue per year

Open Access
Online
ISSN
2081-4836
See all formats and pricing
More options …

Accessible Human-Robot Interaction for Telepresence Robots: A Case Study

Katherine M. Tsui / James M. Dalphond / Daniel J. Brooks / Mikhail S. Medvedev / Eric McCann / Jordan Allspaw / David Kontak / Holly A. Yanco
Published Online: 2015-01-16 | DOI: https://doi.org/10.1515/pjbr-2015-0001

Abstract

The quality of life of people with special needs, such as residents of healthcare facilities, may be improved through operating social telepresence robots that provide the ability to participate in remote activities with friends or family. However, to date, such platforms do not exist for this population.

Methodology: Our research utilized an iterative, bottomup, user-centered approach, drawing upon our assistive robotics experiences. Based on the findings of our formative user studies, we developed an augmented reality user interface for our social telepresence robot. Our user interface focuses primarily on the human-human interaction and communication through video, providing support for semi-autonomous navigation. We conducted a case study (n=4) with our target population in which the robot was used to visit a remote art gallery.

Results: All of the participants were able to operate the robot to explore the gallery, form opinions about the exhibits, and engage in conversation.

Significance: This case study demonstrates that people from our target population can successfully engage in the active role of operating a telepresence robot.

Keywords : accessible user interface; augmented reality; teleoperation; assistive robotics; social telepresence robot; computer-mediated communication; remote presence; embodied video conferencing

References

  • [1] R. Aipperspach, E. Cohen, and J. Canny. Modeling human behavior from simple sensors in the home. Pervasive Computing, pages 337–348, 2006. Google Scholar

  • [2] F. Amirabdollahian, S. Bedaf, R. Bormann, H. Draper, V. Evers, J. G. Pérez, G. J. Gelderblom, C. G. Ruiz, D. Hewson, N. Hu, et al. Assistive technology design and development for acceptable robotics companions for ageing years. Paladyn, Journal of Behavioral Robotics, 4(2):94–112, 2013. Google Scholar

  • [3] Associated Press. Robot rep goes to school. Wired, June 6 2006. http://archive.wired.com/techbiz/media/news/2006/ 06/71078. Accessed Dec. 2014. Google Scholar

  • [4] J. Beer and L. Takayama. Mobile remote presence systems for older adults: Acceptance, benefits, and concerns. In Proc. of the 6th Intl. Conf. on Human-Robot Interaction, pages 19–26. ACM, 2011. Google Scholar

  • [5] E. Bergman and E. Johnson. Towards accessible humancomputer interaction. Advances in human-computer interaction, 5(1), 1995. Google Scholar

  • [6] R. Bevilacqua, A. Cesta, G. Cortellessa, A. Macchione, A. Orlandini, and L. Tiberio. Telepresence robot at home: A long-term case study. In Ambient Assisted Living: Italian Forum 2013, pages 73–85. Springer International Publishing, 2014. Google Scholar

  • [7] G. Carruthers. Is the body schema suflcient for the sense of embodiment? an alternative to de Vignemont’s model. Philosophical Psychology, 22(2):123–142, 2009. Google Scholar

  • [8] J. Casper and R. Murphy. Human-robot interactions during the robot-assisted urban search and rescue response at the world trade center. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 33(3):367–385, 2003. Google Scholar

  • [9] CastingWords. Audio transcription services: MP3s, video and more... Webpage, 2014. http://castingwords.com. Accessed Dec. 2014. Google Scholar

  • [10] R. Chellali and K. Baizid. What maps and what displays for remote situation awareness and ROV localization? In Human Interface and the Management of Information. Interacting with Information, pages 364–372. Springer, 2011. Google Scholar

  • [11] J. Y. Chen, E. C. Haas, and M. J. Barnes. Human performance issues and user interface design for teleoperated robots. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 37(6):1231–1245, 2007. Google Scholar

  • [12] R. A. Cooper. Quality-of-life technology. IEEE Engineering in Medicine and Biology Magazine, 27(2):10, 2008. Google Scholar

  • [13] S. Coradeschi, A. Loutfi, A. Kristoffersson, S. Von Rump, A. Cesta, and G. Cortellessa. Towards a Methodology for Longitudinal Evaluation of Social Robotic Telepresence for Elderly. In Proc. of Human-Robot Interaction Workshop on Social Robotic Telepresence, 2011. Google Scholar

  • [14] M. Desai, K. Tsui, H. Yanco, and C. Uhlik. Essential features of telepresence robots. In Proc. of the IEEE Conf. on Technologies for Practical Robot Applications (TePRA), 2011. Google Scholar

  • [15] J. V. Draper, D. B. Kaber, and J. M. Usher. Telepresence. Human Factors: The Journal of the Human Factors and Ergonomics Society, 40(3):354–375, 1998. Google Scholar

  • [16] H. Evans. Exploring robots for accessibility, in Seattle. Webpage, May 6 2014. http://futureofmuseums.blogspot.com/ 2014/05/exploring-robots-for-accessibility-in.html. Accessed Dec. 2014. Google Scholar

  • [17] D. Fels, L. Williams, G. Smith, J. Treviranus, and R. Eagleson. Developing a Video-mediated Communication System for Hospitalized Children. Telemedicine Journal, 5(2):193–208, 1999. Google Scholar

  • [18] D. Fels, J. Waalen, S. Zhai, and P. Weiss. Telepresence Under Exceptional Circumstances: Enriching the Connection to School for Sick Children. Proc. of IFIP INTERACT01: Human- Computer Interaction, pages 617–624, 2001. Google Scholar

  • [19] R. Fish, R. Kraut, R. Root, and R. Rice. Evaluating video as a technology for informal communication. In Proc. of the SIGCHI Conf. on Human Factors in Computing Systems, pages 37–48. ACM, 1992. Google Scholar

  • [20] J. Fitzgerald. After Surgery, A Robot May Be at Your Side. The Boston Globe, December 12 2011. http://www.boston.com/business/technology/articles/2011/12/12/the_robot_that_ makes_house_calls. Accessed Dec. 2014. Google Scholar

  • [21] N. Fliesler. A Roving Eye: Home Health Monitoring with Robotic Systems. Webpage, December 26 2011. http: //www.massdevice.com/blogs/massdevice/roving-eye-homehealth- monitoring-with-robotic-systems. Accessed Dec. 2014. Google Scholar

  • [22] T. Fong and C. Thorpe. Vehicle teleoperation interfaces. Autonomous Robots, 11(1):9–18, 2001. CrossrefGoogle Scholar

  • [23] J. J. Gibson. The Ecological Approach to Visual Perception. Houghton Mifflin, Boston, 1979. Google Scholar

  • [24] Giraff Technologies AB. giraff. Webpage, 2014. http://www. giraff.org/?lang=en. Accessed Dec. 2014. Google Scholar

  • [25] M. Gonzalez, C. Hidalgo, and A. Barabasi. Understanding individual human mobility patterns. Nature, 453(7196):779– 782, 2008. Google Scholar

  • [26] M. Gorman. Suitable technologies introduces beam, the remote presence device. Webpage, September 26 2012. http://www.engadget.com/2012/09/26/beam-telepresencedevice- suitable-technologies. Accessed Dec. 2014. Google Scholar

  • [27] C. M. Gridley, A. B. Retik, B. Cilento, and H. T. Nguyen. In-home robots can effectively engage children and their parents in post-operative care, and allow for cost-eflcient remote physician monitoring. In American Academy of Pediatrics National Conference and Exhibition, October 20 2012. Session abstract. https://aap.confex.com/aap/2012/webprogram/Paper17310. html. Accessed Dec. 2014. Google Scholar

  • [28] E. Guizzo. When My Avatar Went to Work. IEEE Spectrum, September 22 2010. http://spectrum.ieee.org/robotics/ industrial-robots/when-my-avatar-went-to-work. Accessed Dec. 2014. Google Scholar

  • [29] H. Haas. The influence of a single echo on the audibility of speech. J. Audio Eng. Soc., 20(2):146–159, 1972. Google Scholar

  • [30] M. Hassenzahl. User Experience and Experience Design. Webpage, 2014. http://www.interaction-design.org/encyclopedia/ user_experience_and_experience_design.html; chapter 3. Accessed Dec. 2014. Google Scholar

  • [31] G. J. Hole, P. A. George, K. Eaves, A. Rasek, et al. Effects of geometric distortions on face-recognition performance. Perception-London, 31(10):1221–1240, 2002. Google Scholar

  • [32] R. Hoover. The Force is Strong with NASA’s Smartphone- Powered Satellite, July 8 2011. http://www.nasa.gov/mission_ pages/station/main/spheres_smartphone.html. Accessed Dec. 2014. Google Scholar

  • [33] IBM Centres for Solution Innovation. Telbotics – PEBBLES, 2008. http://www.customerfacingsolutions.com/pdfs/work/ Telebotics%20PEBBLES.pdf. Accessed Dec. 2104. Google Scholar

  • [34] W. A. IJsselsteijn, H. de Ridder, J. Freeman, and S. E. Avons. Presence: concept, determinants, and measurement. In Electronic Imaging, pages 520–529. International Society for Optics and Photonics, 2000. Google Scholar

  • [35] E. Kac. Live from Mars. Leonardo, 31(1):1–2, 1998. ISSN 0024-094X. Google Scholar

  • [36] S. Kiesler, A. Powers, S. Fussell, and C. Torrey. Anthropomorphic interactions with a robot and robot-like agent. Social Cognition, 26(2):169–181, 2008. CrossrefGoogle Scholar

  • [37] D. Kim, R. Hazlett-Knudsen, H. Culver-Godfrey, G. Rucks, T. Cunningham, D. Portee, J. Bricout, Z. Wang, and A. Behal. How autonomy impacts performance and satisfaction: Results from a study with spinal cord injured subjects using an assistive robot. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, 42(1):2–14, 2012. Google Scholar

  • [38] K. Koffka. Principles of Gestalt psychology. Routledge, 4 edition, 2013. Google Scholar

  • [39] Z. G. Kotala. Robotic Arm’s Big Flaw: Patients Say It’s ’Too Easy’. Webpage, September 23 2010. http://today.ucf.edu/ robotic-arms-big-flaw-patients-say-its-too-easy. Accessed Dec. 2014. Google Scholar

  • [40] A. Kristoffersson, S. Coradeschi, K. S. Eklundh, and A. Loutfi. Towards measuring quality of interaction in mobile robotic telepresence using sociometric badges. Paladyn, Journal of Behavioral Robotics, 4(1):34–48, 2013. Google Scholar

  • [41] A. Kristoffersson, S. Coradeschi, and A. Loutfi. A review of mobile robotic telepresence. Advances in Human-Computer Interaction, 2013. Google Scholar

  • [42] S. Kurniawan and P. Zaphiris. Research-derived web design guidelines for older people. In Proceedings of the 7th international ACM SIGACCESS conference on Computers and accessibility, pages 129–135. ACM, 2005. Google Scholar

  • [43] L. Lewington. Robots explore Tate Britain’s artwork after dark. Webpage, August 12 2014. http://www.bbc.com/news/ technology-28742582. Accessed Dec. 2014. Google Scholar

  • [44] A. Lindgren-Streicher and C. Reich. Visitor experience monitoring project: Fiscal year 2010 report. 2011. Google Scholar

  • [45] M. Lombard and T. Ditton. At the heart of it all: The concept of presence. Journal of Computer-Mediated Communication, 3(2): 0–0, 1997. Google Scholar

  • [46] K. Massie. Headline classroom robots make school possible for home-bound students. Webpage, April 5 2014. http://www. simpsonstreetfreepress.org/science-and-technology/robotsubstitution. Accessed Dec. 2014. Google Scholar

  • [47] M. Micire. Evolution and field performance of a rescue robot. Journal of Field Robotics, 25(1-2):17–30, 2008. Google Scholar

  • [48] M. J. Micire. Multi-Touch Interaction for Robot Command and Control. PhD thesis, University of Massachusetts Lowell, December 2010. Google Scholar

  • [49] G. Miller and J. Licklider. The intelligibility of interrupted speech. J. of the Acoustical Soc. of Amer., 1950. Google Scholar

  • [50] M. R. Mine, F. P. Brooks Jr, and C. H. Sequin. Moving objects in space: Exploiting proprioception in virtual-environment interaction. In Proceedings of the 24th annual conference on Computer graphics and interactive techniques, pages 19–26. ACM Press/Addison-Wesley Publishing Co., 1997. Google Scholar

  • [51] J. Nielsen. Usability Engineering. San Francisco, CA: Morgan Kaufmann, 1993. ISBN 0-12-518406-9. Google Scholar

  • [52] J. Nielsen. Enhancing the explanatory power of usability heuristics. In SIGCHI Conf. on Human Factors in Computing Systems, pages 152–158, 1994. Google Scholar

  • [53] J. Nielsen. 10 usability heuristics for user interface design. Webpage, January 1 1995. http://www.nngroup.com/articles/ ten-usability-heuristics. Accessed Dec. 2014. Google Scholar

  • [54] D. Norman. How might people interact with agents. Communications of the ACM, 37(7):68–71, 1994. Google Scholar

  • [55] D. A. Norman. The design of everyday things. Basic books, 2002. Google Scholar

  • [56] K. Pernice and J. Nielsen. Usability guidelines for accessible web design. Technical report, Nielsen Norman Group, 48105 Warm Springs Blvd., Fremont, CA 94539-7498 USA, 2001. http: //www.nngroup.com/reports/usability-guidelines-accessibleweb- design; originally titled Beyond ALT Text: Making the Web Easy to Use for Users with Disabilities. Accessed Dec. 2014. Google Scholar

  • [57] I. Rhee, M. Shin, S. Hong, K. Lee, S. Kim, and S. Chong. On the Levy-walk nature of human mobility. IEEE/ACM Transactions on Networking (TON), 19(3):630–643, 2011. Google Scholar

  • [58] L. Richards. I, Student. Homebound Teen is Attending Classes via Wheel-bound Robot. Webpage, January 19 2011. http: //www.timesrecordnews.com/news/2011/jan/19/i-student. Accessed Dec. 2014. Google Scholar

  • [59] L. D. Riek. Realizing Hinokio: candidate requirements for physical avatar systems. In Proceedings of the ACM/IEEE international conference on Human-robot interaction, pages 303–308. ACM, 2007. Google Scholar

  • [60] G. Riva, F. Davide, and W. A. IJsselsteijn. Being there: Concepts, effects and measurements of user presence in synthetic environments. Ios Press, 2003. Google Scholar

  • [61] J. Rosenberg. Quality matters. United Communications magazine, August 2010. http://www.tmcnet.com/ucmag/columns/ articles/99344-quality-matters.htm. Accessed Dec. 2014. Google Scholar

  • [62] R. Rubin, A. Rubin, E. Graham, E. Perse, and D. Seibold. Communication Research Measures II: A Sourcebook. Routledge, Taylor & Francis, 2009. Google Scholar

  • [63] Ryerson University. PEBBLES. Webpage, 2011. http://www. ryerson.ca/pebbles/index.html. Accessed Dec. 2014. Google Scholar

  • [64] R. Schulz, S. R. Beach, J. T. Matthews, K. L. Courtney, and A. De Vito Dabbs. Designing and evaluating quality of life technologies: An interdisciplinary approach. Proceedings of the IEEE, 100(8):2397–2409, 2012. CrossrefGoogle Scholar

  • [65] B. Shneiderman. Direct manipulation: A step beyond programming languages. Sparks of Innovation in Human-Computer Interaction, page 17, 1993. Google Scholar

  • [66] D. Sirkin, G. Venolia, J. Tang, G. Robertson, T. Kim, K. Inkpen, M. Sedlins, B. Lee, and M. Sinclair. Motion and attention in a kinetic videoconferencing proxy. In Human-Computer Interaction–INTERACT 2011, pages 162–180. Springer, 2011. Google Scholar

  • [67] Suitable Technologies. How beam works. Webpage, 2014. https://www.suitabletech.com/beam/#howBeamWorks. Accessed Dec. 2014. Google Scholar

  • [68] Suitable Technologies, Inc. Shelbot (aka Shelbot), January 9 2013. http://blog.suitabletech.com/2013/01/09/shelbot-akashel- bot. Accessed Dec. 2014. Google Scholar

  • [69] L. Takayama. Toward making robots invisible-in-use. New Frontiers in Human-Robot Interaction, 2, 2011. Google Scholar

  • [70] R. Toris and B. Alexander. The Standard ROS JavaScript Library, June 11 2014. http://wiki.ros.org/roslibjs. Accessed Dec. 2014. Google Scholar

  • [71] K. Tsui, M. Desai, H. Yanco, and C. Uhlik. Exploring use cases for telepresence robots. In Proc. of Intl. Conf. on HRI. ACM/IEEE, 2011. Google Scholar

  • [72] K. Tsui, A. Norton, D. Brooks, H. Yanco, and D. Kontak. Designing telepresence robot systems for use by people with special needs. In Proceedings of the International Symposium on Quality of Life Technologies 2011: Intelligent Systems for Better Living, held in conjunction with RESNA 2011 as part of FICCDAT, 2011. Google Scholar

  • [73] K. M. Tsui. Design and evaluation of a visual control interface of a wheelchair robotic arm for users with cognitive impairments. Master’s thesis, University of Massachusetts Lowell, May 2008. Google Scholar

  • [74] K. M. Tsui. The Development of Telepresence Robots for People with Disabilities. PhD thesis, University of Massachusetts Lowell, April 2014. Google Scholar

  • [75] K. M. Tsui and H. A. Yanco. Design challenges and guidelines for social interaction using mobile telepresence robots. Reviews of Human Factors and Ergonomics, 9(1):227–301, 2013. Google Scholar

  • [76] K. M. Tsui, K. Abu-Zahra, R. Casipe, J. M’Sadoques, and J. L. Drury. A Process for Developing Specialized Heuristics: Case Study in Assistive Robotics. Technical report, University of Massachusetts Lowell, 2009. Available at http://teaching.cs. uml.edu/techrpts. Google Scholar

  • [77] K. M. Tsui, K. Abu-Zahra, R. Casipe, J. M’Sadoques, and J. L. Drury. Developing Heuristics for Assistive Robotics. In Proc. of Intl. Conf. on HRI. ACM/IEEE, 2010. Late breaking paper. Google Scholar

  • [78] K. M. Tsui, M. Desai, and H. Yanco. Towards Measuring the Quality of Interaction: Communication through Telepresence Robots. In Proc. of the Performance Metrics for Intelligent Systems Workshop (PerMIS), 2012. Google Scholar

  • [79] K. M. Tsui, K. Flynn, A. McHugh, H. A. Yanco, and D. Kontak. Designing speech-based interfaces for telepresence robots for people with disabilities. In IEEE International Conference on Rehabilitation Robotics (ICORR), 2013. Google Scholar

  • [80] K. M. Tsui, E. McCann, A. McHugh, M. Medvedev, H. A. Yanco, D. Kontak, and J. L. Drury. Towards designing telepresence robot navigation for people with disabilities. International Journal of Intelligent Computing and Cybernetics, 7(3):307– 344, 2014. Google Scholar

  • [81] K. M. Tsui, A. Norton, D. J. Brooks, E. McCann, M. S. Medvedev, J. Allspaw, S. Suksawat, J. M. Dalphond, M. Lunderville, and H. A. Yanco. Iterative design of a semi-autonomous social telepresence robot research platform: a chronology. Intelligent Service Robotics, 7(2):103–119, 2014. Google Scholar

  • [82] K. Urrutia. Creating a CSS3 pulsating circle. Webpage, January 24 2012. http://kevinurrutia.tumblr.com/post/16411271583/ creating-a-css3-pulsating-circle. Accessed Dec. 2014. Google Scholar

  • [83] G. Vanderheiden and K. Vanderheiden. Guidelines for the design of consumer products to increase their accessibility to persons with disabilities or who are aging. Webpage, 1992. http://trace.wisc.edu/docs/consumer_product_guidelines/ toc.htm; working draft v1.7. Accessed Dec. 2014. Google Scholar

  • [84] P. Vespa. Multimodality Monitoring and Telemonitoring in Neurocritical Care: From Microdialysis to Robotic telepresence. Current Opinion in Critical Care, 11(2):133, 2005. ISSN 1070- 5295. Google Scholar

  • [85] P. Vespa, C. Miller, X. Hu, V. Nenov, F. Buxey, and N. Martin. Intensive Care Unit Robotic Telepresence Facilitates Rapid Physician Response to Unstable Patients and Decreased Cost in Neurointensive Care. Surgical Neurology, 67(4):331–337, 2007. ISSN 0090-3019. Google Scholar

  • [86] VGo Communications, Inc. VGo robotic telepresence for healthcare, education and business, 2014. http://www. vgocom.com. Accessed Dec. 2014. Google Scholar

  • [87] W3C. Web Content Accessibility Guidelines (WCAG) 2.0. Webpage, December 11 2008. http://www.w3.org/TR/2008/RECWCAG20- 20081211. Accessed Dec. 2014. Google Scholar

  • [88] W3C. User agent accessibility guidelines (UAAG) 2.0. Webpage, November 7 2013. http://www.w3.org/TR/2013/WDUAAG20- 20131107; draft. Accessed Dec. 2014. Google Scholar

  • [89] J. Wineman, J. Peponis, and R. Conroy Dalton. Exploring, engaging, understanding in museums. In Proceedings of the Space Syntax and Spatial Cognition Workshop: Spatial Cognition ’06. Springer, 2006. Monograph Series of the Transregional Collaborative Research Center. Universität Bremen, Bremen. Google Scholar

  • [90] H. A. Yanco, H. J. Kim, F. G. Martin, and L. Silka. Artbotics: Combining art and robotics to broaden participation in computing. In AAAI Spring Symposium on Robots and Robot Venues: Resources for AI Education, 2007. Google Scholar

  • [91] S. Yarosh and P. Markopoulos. Design of an Instrument for the Evaluation of Communication Technologies with Children. In Proc. of the 9th Intl. Conf. on Interaction Design and Children, pages 266–269. ACM, 2010. Google Scholar

About the article

Received: 2014-10-01

Accepted: 2014-12-26

Published Online: 2015-01-16


Citation Information: Paladyn, Journal of Behavioral Robotics, ISSN (Online) 2081-4836, DOI: https://doi.org/10.1515/pjbr-2015-0001.

Export Citation

© 2015 Katherine M. Tsui et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Eduard Clotet, Dani Martínez, Javier Moreno, Marcel Tresanchez, and Jordi Palacín
Sensors, 2016, Volume 16, Number 5, Page 610

Comments (0)

Please log in or register to comment.
Log in