Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Paladyn, Journal of Behavioral Robotics

Editor-in-Chief: Schöner, Gregor


Covered by SCOPUS


CiteScore 2017: 0.33
SCImago Journal Rank (SJR) 2017: 0.104
ICV 2017: 99.90



Open Access
Online
ISSN
2081-4836
See all formats and pricing
More options …

Soft Biometrics for a Socially Assistive Robotic Platform

Pierluigi Carcagnì / Dario Cazzato / Marco Del Coco / Pier Luigi Mazzeo / Marco Leo / Cosimo Distante
Published Online: 2015-03-12 | DOI: https://doi.org/10.1515/pjbr-2015-0004

Abstract

In thiswork, a real-time system able to automatically recognize soft-biometric traits is introduced and used to improve the capability of a humanoid robot to interact with humans. In particular the proposed system is able to estimate gender and age of humans in images acquired from the embedded camera of the robot. This knowledge allows the robot to properly react with customized behaviors related to the gender/age of the interacting individuals. The system is able to handle multiple persons in the same acquired image, recognizing the age and gender of each person in the robot’s field of view. These features make the robot particularly suitable to be used in socially assistive applications.

Keywords : human-robot interaction; biometrics; artificial intelligence; gender recognition; age group recognition

References

  • [1] (May 2014), https://community.aldebaran-robotics.com/doc/ 1-14/index.html Google Scholar

  • [2] (May 2014), http://www.faceaginggroup.com/morph/ Google Scholar

  • [3] Belhumeur, P., Hespanha, J., Kriegman, D.: Eigenfaces vs. fisherfaces: recognition using class specific linear projection. Pattern Analysis and Machine Intelligence, IEEE Transactions on 19(7), 711–720 (Jul 1997) Google Scholar

  • [4] Bemelmans, R., Gelderblom, G.J., Jonker, P., De Witte, L.: Socially assistive robots in elderly care: A systematic review into effects and effectiveness. Journal of the American Medical Directors Association 13(2), 114–120 (2012) CrossrefGoogle Scholar

  • [5] Boser, B.E., Guyon, I.M., Vapnik, V.N.: A training algorithm for optimal margin classifiers. In: Proceedings of the Fifth Annual Workshop on Computational Learning Theory. pp. 144–152. COLT ’92, ACM, New York, NY, USA (1992), http://doi.acm.org/ 10.1145/130385.130401 CrossrefGoogle Scholar

  • [6] Brey, P.: Freedom and privacy inambient intelligence. Ethics and Information Technology 7(3), 157–166 (2005) Google Scholar

  • [7] Brunelli, R., Poggio, T.: Hyberbf networks for gender classification (1995) Google Scholar

  • [8] Carcagni, P., Del Coco, M., Mazzeo, P., Testa, A., Distante, C.: Features descriptors for demographic estimation: a comparative study. In: Workshop on Video Analytics for Audience Measurement in Retail and Digital Signage (VAAM). In Conjunction with the 22nd International Conference on Pattern Recognition ICPR 2014 (Aug 2014), accepted for pubblication Google Scholar

  • [9] Castrillón, M., Déniz, O., Guerra, C., Hernández, M.: Encara2: Real-time detection of multiple faces at different resolutions in video streams. Journal of Visual Communication and Image Representation 18(2), 130–140 (2007) Web of ScienceGoogle Scholar

  • [10] Chang, C.C., Lin, C.J.: LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology 2, 27:1–27:27 (2011), software available at http://www.csie. ntu.edu.tw/~cjlin/libsvm Google Scholar

  • [11] Chen, J., Shan, S., He, C., Zhao, G., Pietikainen, M., Chen, X., Gao, W.: Wld: A robust local image descriptor. Pattern Analysis and Machine Intelligence, IEEE Transactions on 32(9), 1705– 1720 (Sept 2010) Google Scholar

  • [12] Cortes, C., Vapnik, V.: Support-vector networks. Machine Learning 20(3), 273–297 (1995), http://dx.doi.org/10.1023/A% 3A1022627411411 CrossrefGoogle Scholar

  • [13] Cottrell, G.W., Metcalfe, J.: Empath: Face, emotion, and gender recognition using holons. In: Advances in Neural Information Processing Systems. pp. 564–571 (1990) Google Scholar

  • [14] Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on. vol. 1, pp. 886–893 vol. 1 (June 2005) Google Scholar

  • [15] Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55(1), 119–139 (Aug 1997) CrossrefGoogle Scholar

  • [16] Fukai, H., Nishie, Y., Abiko, K., Mitsukura, Y., Fukumi, M., Tanaka, M.: An age estimation system on the aibo. In: Control, Automation and Systems, 2008. ICCAS 2008. International Conference on. pp. 2551–2554 (Oct 2008) Google Scholar

  • [17] Golomb, B.A., Lawrence, D.T., Sejnowski, T.J.: Sexnet: A neural network identifies sex from human faces. In: NIPS. pp. 572–579 (1990) Google Scholar

  • [18] H., A., D., V., B., E., AJ., O.: More about the difference between men and women: evidence from linear neural networks and the principal-component approach. Neural Comput. 7(6), 1160 – 1164 (1995) Google Scholar

  • [19] Hsu, C.W., Chang, C.C., Lin, C.J., et al.: A practical guide to support vector classification (2003) Google Scholar

  • [20] Hsu, C.W., Lin, C.J.: A comparison of methods formulticlass support vector machines. Neural Networks, IEEE Transactions on 13(2), 415–425 (Mar 2002) Google Scholar

  • [21] Jain, A.K., Dass, S.C., Nandakumar, K.: Soft biometric traits for personal recognition systems. In: Biometric Authentication, pp. 731–738. Springer (2004) Google Scholar

  • [22] Knerr, S., Personnaz, L., Dreyfus, G.: Single-layer learning revisited: a stepwise procedure for building and training a neural network. In: Souli, F., Hrault, J. (eds.) Neurocomputing, NATOASI Series, vol. 68, pp. 41–50. Springer Berlin Heidelberg (1990), http://dx.doi.org/10.1007/978-3-642-76153-9_5 CrossrefGoogle Scholar

  • [23] Lee, M.W., Kwak, K.C.: Performance comparison of gender and age group recognition for human-robot interaction. International Journal of Advanced Computer Science & Applications 3(12) (2012) Google Scholar

  • [24] Liu, L., Liu, J., Cheng, J.: Age-group classification of facial images. In: Machine Learning and Applications (ICMLA), 2012 11th International Conference on. vol. 1, pp. 693–696 (Dec 2012) Google Scholar

  • [25] Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60(2), 91–110 (Nov 2004) CrossrefGoogle Scholar

  • [26] Luo, R., Chang, L.W., Chou, S.C.: Human age classification using appearance images for human-robot interaction. In: Industrial Electronics Society, IECON 2013 - 39th Annual Conference of the IEEE. pp. 2426–2431 (Nov 2013) Google Scholar

  • [27] Luo, R.C., Wu, X.: Real-time gender recognition based on 3d human body shape for human-robot interaction. In: Proceedings of the 2014 ACM/IEEE international conference on Human-robot interaction. pp. 236–237. ACM (2014) Google Scholar

  • [28] Lyons, M.J., Budynek, J., Plante, A., Akamatsu, S.: Classifying facial attributes using a 2-d gabor wavelet representation and discriminant analysis. In: Automatic Face and Gesture Recognition, 2000. Proceedings. Fourth IEEE International Conference on. pp. 202–207 (2000) Google Scholar

  • [29] Mäkinen, E., Raisamo, R.: An experimental comparison of gender classification methods. Pattern Recognition Letters 29(10), 1544 – 1556 (2008), http://www.sciencedirect.com/science/ article/pii/S0167865508001116 Web of ScienceGoogle Scholar

  • [30] Martiriggiano, T., Leo, M., D’Orazio, T., Distante, A.: Face recognition by kernel independent component analysis. In: Ali, M., Esposito, F. (eds.) Innovations in Applied Artificial Intelligence, Lecture Notes in Computer Science, vol. 3533, pp. 55–58. Springer Berlin Heidelberg (2005), http://dx.doi.org/10.1007/ 11504894_7 CrossrefGoogle Scholar

  • [31] McColl, D., Zhang, Z., Nejat, G.: Human body pose interpretation and classification for social human-robot interaction. International Journal of Social Robotics 3(3), 313–332 (2011) Web of ScienceGoogle Scholar

  • [32] Moore, D.: Computers and people with autism. Asperger Syndrome pp. 20–21 (1998) Google Scholar

  • [33] Moore, D., McGrath, P., Thorpe, J.: Computer-aided learning for peoplewith autism - a framework for research and development. Innovations in Education and Teaching International 37(3), 218– 228 (2000) Google Scholar

  • [34] Phillips, P., Moon, H., Rizvi, S., Rauss, P.: The feret evaluation methodology for face-recognition algorithms. Pattern Analysis and Machine Intelligence, IEEE Transactions on 22(10), 1090– 1104 (Oct 2000) Google Scholar

  • [35] Saatci, Y., Town, C.: Cascaded classification of gender and facial expression using active appearance models. In: Automatic Face and Gesture Recognition, 2006. FGR 2006. 7th International Conference on. pp. 393–398 (April 2006) Google Scholar

  • [36] Sakarkaya, M., Yanbol, F., Kurt, Z.: Comparison of several classification algorithms for gender recognition from face images. In: Intelligent Engineering Systems (INES), 2012 IEEE 16th International Conference on. pp. 97–101 (June 2012) Google Scholar

  • [37] Sun, N., Zheng, W., Sun, C., Zou, C., Zhao, L.: Gender classification based on boosting local binary pattern. In: Wang, J., Yi, Z., Zurada, J., Lu, B.L., Yin, H. (eds.) Advances in Neural Networks - ISNN 2006, Lecture Notes in Computer Science, vol. 3972, pp. 194–201. Springer Berlin Heidelberg (2006) Google Scholar

  • [38] Sun, Z., Bebis, G., Yuan, X., Louis, S.J.: Genetic feature subset selection for gender classification: A comparison study. In: In: IEEE Workshop on Applications of Computer Vision. pp. 165–170 (2002) Google Scholar

  • [39] Tapus, A., Maja, M., et al.: Towards socially assistive robotics. International journal of the Robotics Society of Japan (JRSJ) 24(5), 576–578 (2006) Google Scholar

  • [40] Tapus, A., Țăpuş, C., Matarić, M.J.: User?robot personality matching and assistive robot behavior adaptation for poststroke rehabilitation therapy. Intelligent Service Robotics 1(2), 169–183 (2008) Google Scholar

  • [41] Tapus, A., Tapus, C., Mataric, M.J.: The use of socially assistive robots in the design of intelligent cognitive therapies for people with dementia. In: Rehabilitation Robotics, 2009. ICORR 2009. IEEE International Conference on. pp. 924–929. IEEE (2009) Google Scholar

  • [42] Ullah, I., Hussain, M.,Muhammad, G., Aboalsamh, H., Bebis, G., Mirza, A.: Gender recognition from face images with local wld descriptor. In: Systems, Signals and Image Processing (IWSSIP), 2012 19th International Conference on. pp. 417–420 (April 2012) Google Scholar

  • [43] Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Computer Vision and Pattern Recognition, 2001. CVPR 2001. Proceedings of the 2001 IEEE Computer Society Conference on. vol. 1, pp. I–511. IEEE (2001) Google Scholar

  • [44] Walker, J.H., Sproull, L., Subramani, R.: Using a human face in an interface. In: Proceedings of the SIGCHI conference on Human factors in computing systems. pp. 85–91. ACM (1994) Google Scholar

  • [45] Wayman, J.L.: Large-scale civilian biometrics system - issues and feasibility. In: Proceedings of the CardTech/SecureTech Government, Washington DC (1997) Google Scholar

  • [46] Ylioinas, J., Hadid, A., Pietikainen, M.: Age classification in unconstrained conditions using lbp variants. In: Pattern Recognition (ICPR), 2012 21st International Conference on. pp. 1257– 1260 (Nov 2012) Google Scholar

  • [47] Ylioinas, J., Hadid, A., Hong, X., Pietikäinen, M.: Age estimation using local binary pattern kernel density estimate. In: Petrosino, A. (ed.) Image Analysis and Processing - ICIAP 2013, Lecture Notes in Computer Science, vol. 8156, pp. 141–150. Springer Berlin Heidelberg (2013) Google Scholar

About the article

Received: 2014-09-30

Accepted: 2015-01-27

Published Online: 2015-03-12


Citation Information: Paladyn, Journal of Behavioral Robotics, Volume 6, Issue 1, ISSN (Online) 2081-4836, DOI: https://doi.org/10.1515/pjbr-2015-0004.

Export Citation

© 2015 Pierluigi Carcagnì et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in