Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Paladyn, Journal of Behavioral Robotics

Editor-in-Chief: Schöner, Gregor

Covered by SCOPUS

CiteScore 2018: 2.17

SCImago Journal Rank (SJR) 2018: 0.336
Source Normalized Impact per Paper (SNIP) 2018: 1.707

ICV 2017: 99.90

Open Access
See all formats and pricing
More options …

On the Integration of Adaptive and Interactive Robotic Smart Spaces

Mauro Dragone
  • Distributed System Group, School of Computer Science and Statistics, Trinity College Dublin, Ireland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Joe Saunders
  • Adaptive Systems Research Group, Science and Technology Research Institute, University of Hertfordshire, United Kingdom
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Kerstin Dautenhahn
  • Adaptive Systems Research Group, Science and Technology Research Institute, University of Hertfordshire, United Kingdom
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-08-11 | DOI: https://doi.org/10.1515/pjbr-2015-0009


Enabling robots to seamlessly operate as part of smart spaces is an important and extended challenge for robotics R&D and a key enabler for a range of advanced robotic applications, such as AmbientAssisted Living (AAL) and home automation. The integration of these technologies is currently being pursued from two largely distinct view-points: On the one hand, people-centred initiatives focus on improving the user’s acceptance by tackling human-robot interaction (HRI) issues, often adopting a social robotic approach, and by giving to the designer and - in a limited degree – to the final user(s), control on personalization and product customisation features. On the other hand, technologically-driven initiatives are building impersonal but intelligent systems that are able to pro-actively and autonomously adapt their operations to fit changing requirements and evolving users’ needs, but which largely ignore and do not leverage human-robot interaction and may thus lead to poor user experience and user acceptance. In order to inform the development of a new generation of smart robotic spaces, this paper analyses and compares different research strands with a view to proposing possible integrated solutions with both advanced HRI and online adaptation capabilities.

Keywords : Human Robot Interaction; Smart Homes; Ambient Assisted Living; Robotic Ecology


  • [1] Companionable, “Integrated Cognitive Assistive & Domotic Companion Robotic Systems for Ability and Security,” http:// www.companionable.net/, Last referenced on 27th of January, 2014, 2008. Google Scholar

  • [2] KSERA, “Knowledgeable Service Robots for Ageing,” http:// ksera.ieis.tue.nl/, Last referenced on 27th of January, 2014, 2010. Google Scholar

  • [3] Florence, “Multi-Purpose Mobile Robot for Ambient Assisted Living,” http://www.florence-project.eu/, Last referenced on 27th of January, 2014, 2010. Google Scholar

  • [4] Mobiserve, “A buddy in your home,” http://www.smarthomes. nl/innovatie/europees-onderzoek/mobiserv.aspx? lang$=$en-US, Last referenced on 27th of January, 2014, 2009. Google Scholar

  • [5] Hobbit, “TheMutual Care Robot,” http://hobbit.acin.tuwien.ac. at/, Last referenced on 27th of January, 2014, 2011. Google Scholar

  • [6] Alias, “Adaptable Ambient Living Assistant,” http://www.aalalias. eu/, Last referenced on 27th of January, 2014, 2010. Google Scholar

  • [7] ACCOMPANY, “Acceptable robotiCs COMPanions for AgeiNg Years,” http://accompanyproject.eu/, Last referenced 27th July 2014, 2012. Google Scholar

  • [8] K. Yamazaki, R. Ueda, S. Nozawa, M. Kojima, K. Okada, K. Matsumoto, M. Ishikawa, I. Shimoyama, M. Inaba, “Home-Assistant Robot for an Aging Society“, Proceedigns of The IEEE, Centennial Year, Special Issue, Quality of Life Technology, Vol.100, No.8, pp.2429–2441, 2012. Google Scholar

  • [9] Robot-ERA, “Implementation and integration of Advanced Robotic systems and intellgent Environments in real scenarios for the ageing population,” http://www.robot-era.eu/ robotera/, Last referenced on 27th of January, 2014, 2012. Google Scholar

  • [10] G. Cortellessa, M. Scopelliti, L. Tiberio, G. K. Svedberg, A. Loutfi, and F. Pecora, “A cross-cultural evaluation of domestic assistive robots,” in AAAI Fall Symposium on AI and Eldercare, Washington, USA, 2008. Google Scholar

  • [11] D. Bacciu, C. Gallicchio, A. Micheli, M. Di Rocco, A. Saflotti, “Learning context-aware mobile robot navigation in home environments“, in Information, Intelligence, Systems and Applications, The 5th International Conference on (IISA 2014), 2014, pp. 57-62. Google Scholar

  • [12] K. Dautenhahn, “Robots we like to live with?! - a developmental perspective on a personalized, life-long robot companion,” in Proc. 13th IEEE International Workshop on Robot and Human Interactive Communication (ROMAN’14) – Kurashiki, Japan, 2004, pp. 17–22. Google Scholar

  • [13] M. K. Lee, J. Forlizzi, S. Kiesler, P. Rybski, J. Antanitis, and S. Savetsila, “Personalization in HRI: A longitudinal field experiment,” in Proceedings of the Seventh Annual ACM/IEEE International Conference on Human-Robot Interaction. New York, NY, USA: ACM, 2012, pp. 319–326. Google Scholar

  • [14] “Network Robot Forum,” http://www.scat.or.jp/nrf/English/, last referenced on 23rd January 2014. Google Scholar

  • [15] F. Dressler, Self-organization in Autonomous Sensor and Actuator Networks. John Wiley & Sons, 2007. Google Scholar

  • [16] J.-H. Kim, Y.-D. Kim, and K.-H. Lee, “The third generation of robotics: Ubiquitous robot,” in Proc. of 2nd International Conference on Autonomous Robots and Agents, Palmerston North, New Zealand, 2004. Google Scholar

  • [17] R. Lundh, L. Karlsson, and A. Saflotti, “Dynamic selfconfiguration of an ecology of robots,” in Proc. of the 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, San Diego, USA, 2007, pp. 3404–3409. Google Scholar

  • [18] M. Broxvall, “A middleware for ecologies of robotic devices,” in Proc. of the 1st International Conference on Robot Communication and Coordination. IEEE Press, 2007, pp. 30:1–30:8. Google Scholar

  • [19] “Alderbaran Robotics,” http://www.aldebaran-robotics.com/ en/Home/welcome.html?language$=$en-GB, last referenced on 23rd January 2014. Google Scholar

  • [20] J. O. Blom and A. F. Monk, “Theory of personalization of appearance: Why users personalize their PCs andmobile phones,” Hum.-Comput. Interact., vol. 18, no. 3, pp. 193–228, 2003. Google Scholar

  • [21] E. T. Hall, The Hidden Dimension, 1966. Google Scholar

  • [22] M. L.Walters, M. A. Oskoei, D. S. Syrdal, and K. Dautenhahn, “A long-term human-robot proxemic study,” in Proc. of 20th IEEE International Symposium on Robot and Human Interactive Communication, RO-MAN 2011, Atlanta, USA, 2011, pp. 137–142. Google Scholar

  • [23] E. Pacchierotti, H. I. Christensen, and P. Jensfelt, “Embodied social interaction for service robots in hallway environments,” in Proc. of Field and Service Robotics, Results of the 5th International Conference, FSR 2005, Port Douglas, Australia, 2005, pp. 293–304. Google Scholar

  • [24] K. Dautenhahn, M. L. Walters, S. Woods, K. L. Koay, C. L. Nehaniv, E. A. Sisbot, R. Alami, and T. Siméon, “How may I serve you?: a robot companion approaching a seated person in a helping context,” in Proc. of the 1st ACM SIGCHI/SIGART Conference on Human-Robot Interaction, HRI 2006, Salt Lake City, USA, 2006, pp. 172–179. Google Scholar

  • [25] J. Mumm and B. Mutlu, “Human-robot proxemics: Physical and psychological distancing in human-robot interaction,” in Proc. of the 6th International Conference on Human-robot Interaction. ACM, 2011, pp. 331–338. Google Scholar

  • [26] M. L. Walters, D. S. Syrdal, K. Dautenhahn, I. R. J. A. te Boekhorst, and K. L. Koay, “Avoiding the uncanny valley: robot appearance, personality and consistency of behavior in an attention-seeking home scenario for a robot companion,” Auton. Robots, vol. 24, no. 2, pp. 159–178, 2008. Google Scholar

  • [27] D. Li, P.-L. P. Rau, and Y. Li, “A cross-cultural study: Effect of robot appearance and task,” Int. Jrnl. Social Robotics, vol. 2, no. 2, pp. 175–186, 2010. Google Scholar

  • [28] J. Goetz, S. Kiesler, and A. Powers, “Matching robot appearance and behavior to tasks to improve human-robot cooperation,” in Proc. of 12th IEEE International Workshop on Robot and Human Interactive Communication. RO-MAN’03. IEEE, 2003, pp. 55–60. Google Scholar

  • [29] Pleo, “http://www.pleoworld.com/pleo_rb/eng/index.php,” Last referenced on 27th of January, 2014. Google Scholar

  • [30] AIBO, “http://www.sony-europe.com/support/aibo/1_1_3_ aibo_story.asp?language$=$en,” Last referenced on 27th of January, 2014. Google Scholar

  • [31] Roomba, “http://www.irobot.com/global/en/store/Roomba. aspx?gclid$=$CJjunOysnrwCFSbnwgodEiwAFA,” Last referenced on 27th of January, 2014. Google Scholar

  • [32] K. Dautenhahn, S. Woods, C. Kaouri, M. L. Walters, K. L. Koay, and I. Werry, “What is a robot companion - friend, assistant or butler,” in In Proc. IEEE IROS, 2005, pp. 1488–1493. Google Scholar

  • [33] F. Amirabdollahian, S. Bedaf, R. Bormann, H. Draper, V. Evers, J. G. Pérez, G. J. Gelderblom, C. G. Ruiz, D. Hewson, N. Hu et al., “Assistive technology design and development for acceptable robotics companions for ageing years,” Paladyn, Journal of Behavioral Robotics, pp. 1–19, 2013. Google Scholar

  • [34] J. Saunders, N. Burke, K. L. Koay, and K. Dautenhahn, “A user friendly robot architecture for re-ablement and co-learning in a sensorised homes,” in Proc. 12th European Conf. Advancement Assistive Technology in Europe, (AAATE13), 2013. Google Scholar

  • [35] U. Reiser, C. Connette, J. Fischer, J. Kubacki, A. Bubeck, F. Weisshardt, T. Jacobs, C. Parlitz, M. Hagele, and A. Verl, “Care-obot ®creating a product vision for service robot applications by integrating design and technology,” in Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ International Conference on. IEEE, 2009, pp. 1992–1998. Google Scholar

  • [36] J. Stienstra, P. Marti, and M. Tittarelli, “Exploring dynamic expression in human-system interaction,” in Proceedings of CHI 2013, Paris, 2013. Google Scholar

  • [37] P. Marti and J. Stienstra, “Engaging through her eyes: embodying the perspective of a robot companion,” in Proceedings of the 18th International Symposium on Artificial Life and Robotics, AROB 2013., Daejeon, Korea, 2013. Google Scholar

  • [38] A. Saflotti and M. Broxvall, “PEIS ecologies: Ambient intelligence meets autonomous robotics,” in Proc. of the 2005 joint conference on Smart objects and ambient intelligence: innovative context-aware services: usages and technologies. ACM, pp. 277–281, 2005. Google Scholar

  • [39] Rubicon, “A Self-learning Robotic Ecology,” http://fp7rubicon. eu/, Last referenced on 28th of September, 2014, 2014. Google Scholar

  • [40] R. Lundh, L. Karlsson, and A. Saflotti, “Dynamic selfconfiguration of an ecology of robots,” in Proc. of the International Conference on Intelligent Robots and Systems, 2007. IROS 2007. IEEE/RSJ, 2007, pp. 3403–3409. Google Scholar

  • [41] J. F. Allen, “Maintaining knowledge about temporal intervals,” Communications of the ACM, vol. 26, no. 11, pp. 832–843, 1983. Google Scholar

  • [42] D. Bacciu, S. Chessa, C. Gallicchio, A. Lenzi, A. Micheli, and S. Pelagatti, “A general purpose distributed learning model for robotic ecologies,” in Proceedings of the 10th International IFAC Symposium on Robot Control (SYROCO’12), vol. 10, 2012, pp. 435–440. Google Scholar

  • [43] M. LukošEvičIus and H. Jaeger, “Survey: Reservoir computing approaches to recurrent neural network training,” Comput. Sci. Rev., vol. 3, no. 3, pp. 127–149, Aug. 2009. Google Scholar

  • [44] C. Gallicchio, A. Micheli, P. Barsocchi, and S. Chessa, “User movements forecasting by reservoir computing using signal streams produced by mote-class sensors,” in Mobile Lightweight Wireless Systems - Third International ICST Conference, MOBILIGHT 2011, Bilbao, Spain, May 9-10, 2011, Revised Selected Papers, ser. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering. Springer, 2011, pp. 151–168. Google Scholar

  • [45] D. Bacciu, C. Gallicchio, A. Lenzi, S. Chessa, A. Micheli, S. Pelagatti, and C. Vairo, “Distributed neural computation over wsn in ambient intelligence,” in Ambient Intelligence - Software and Applications, ser. Advances in Intelligent Systems and Computing, A. Berlo, K. Hallenborg, J. M. C. Rodríguez, D. I. Tapia, and P. Novais, Eds. Springer International Publishing, 2013, vol. 219, pp. 147–154. Google Scholar

  • [46] A. K. Ray, G. Leng, T. McGinnity, S. Coleman, and L. Maguire, “Development of cognitive capabilities for smart home using a self-organizing fuzzy neural network,” in 10th IFAC Symposium on Robot Control, Dubrovnik, Croatia, 2012. Google Scholar

  • [47] G. Prasad, G. Leng, T. McGinnity, and D. Coyle, “Online identification of self-organizing fuzzy neural networks for modelling time-varying complex systems,” in Evolving Intelligent Systems: Methodology and Applications, ser. Computational Intelligence. IEEE, 2010. Google Scholar

  • [48] B. Shneiderman and P.Maes, “Directmanipulation vs. interface agents,” Interactions, vol. 4, no. 6, pp. 42–61, Nov. 1997. Google Scholar

  • [49] M. Di Rocco and F. Pecora and P. Kumar and A. Saflotti, “Configuration Planning with Multiple Dynamic Goals,” in Proc. of the AAAI Spring Symposium on Designing Intelligent Robots, Stanford, California, March 2013. Google Scholar

  • [50] D. Bacciu and P. Barsocchi and S. Chessa and C. Gallicchio and A. Micheli, “An experimental characterization of reservoir computing in ambient assisted living applications,” Neural Computing and Applications, Springer-Verlag, 2013, pp. 1–14. Google Scholar

  • [51] K. Eunju, H. Sumi, D. Cook, “Human Activity Recognition and Pattern Discovery,” Neural Computing and Applications, Pervasive Computing, IEEE , vol.9, no.1, pp.48-53, Jan. March 2010. Google Scholar

  • [52] M. Kurz, G. Hoelzl, A. Ferscha, A. Calatroni, D. Roggen, G. Troester, H. Sagha, R. Chavarriaga, J. Millán, D. Banach, K. Kunze, P. Lukowicz, “The OPPORTUNITY Framework and Data Processing Ecosystem for Opportunistic Activity and Context Recognition,” International Journal of Sensors, Wireless Communications and Control, vol. 1, num. 2, p. 102-125, 2012. Google Scholar

  • [53] J. Ye and S. Dobson, and S. McKeever, “Situation identification techniques in pervasive computing: A review,” Pervasive and mobile computing, Elsevier, vol. 8, num. 1, p. 36-66, 2012. Google Scholar

  • [54] P. Rashidi DJC, “The resident in the loop: Adapting the smart home to the user,” IEEE Transactions on Systems, Man, and Cybernetics journal, Part A. 2009 September;39(5):949–959. Google Scholar

  • [55] S. Szewcyzk, K. Dwan, B. Minor, B. Swedlove, D. Cook, “Annotating smart environment sensor data for activity learning,” Technology and Health Care, Special issue on Smart environments: Technology to support health care, 2009. Google Scholar

  • [56] S. Helal, W. Mann, H. El-Zabadani, J. King, Y. Kaddoura, E. Jansen, “The gator tech smart house: A programmable pervasive space,” Computer, 2005;38(3):50–60. Google Scholar

  • [57] EM. Tapia, SS. Intille, K. Larson, “Activity recognition in the home using simple and ubiquitous sensors,” Pervasive Computing, 2004:158–175. Google Scholar

  • [58] D. Cook and N. C. Krishnan and P. Rashidi, “Activity Discovery and Activity Recognition: A New Partnership,” IEEE T. Cybernetics, vol. 43, num. 3, p. 820-828, 2013. Google Scholar

  • [59] P. Rashidi and D. Cook and L. B. Holder and M. Schmitter- Edgecombe, “Discovering Activities to Recognize and Track in a Smart Environment,” IEEE Trans. Knowl. Data Eng., vol. 23, num. 4, p. 527-539, 2011. Google Scholar

  • [60] KSERA Project: Deliverable D4.1 Learning & decision making algorithms in pervasive environments, “http://cms.ieis.tue.nl/ ksera/documents/KSERA_D4.1.pdf,”, November 2010, Last referenced on 9th of March, 2014. Google Scholar

  • [61] R.V. Kulkarni, A. Főrster, G.K. Venayagamoorthy, “Computational Intelligence inWireless Sensor Networks: A Survey“, IEEE Communications Surveys & Tutorials, 13(1), 2011. Google Scholar

  • [62] C.J.C.H.Watkins, “Learning from delayed rewards“, PhD Thesis, University of Cambridge, England, 1989. Google Scholar

  • [63] M. Dragone, M. Di Rocco, F. Pecora, A. Saflotti and D. Swords, “A Software Suite for the Control and the Monitoring of Adaptive Robotic Ecologies“, inWorkshop on Towards Fully Decentralized Multi-Robot Systems: Hardware, Software and Integration 2013 IEEE International Conference on Robotics and Automation, ICRA 2013 Karlsruhe, Germany, May 6 - 10, 2013. Google Scholar

  • [64] A. Khalili, C. Wu, and H. Aghajan, “Autonomous Learning of User’s Preference of Music and Light Services in Smart Home Applications“, in Behavior Monitoring and Interpretation Workshop at German AI Conf, Sept. 2009. Google Scholar

  • [65] A. Aztiria, J. C. Augusto, R. Basagoiti, A. Izaguirre, D.J. Cook, “Learning Frequent Behaviors of the Users in Intelligent Environments“, in IEEE T. Systems, Man, and Cybernetics: Systems, vol. 43, num. 6, p. 1265-1278, 2013. Google Scholar

  • [66] H. Lieberman, “Your Wish is My Command: Programming by Example“, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2001. Google Scholar

  • [67] Y. Sugiura, D. Sakamoto, A. Withana, M. Inami, and T. Igarashi, “Cooking with Robots: Designing a Household System Working in Open Environments“, in CHI 2010, p. 2427-2430, 2010. Google Scholar

  • [68] H. Dang and P.K. Allen, “Robot learning of everyday object manipulations via human demonstration“, in Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International Conference on, p. 1284 -1289, 2010. Google Scholar

  • [69] R. Fung, S. Hashimoto, M. Inami, T. Igarashi, “An augmented reality system for teaching sequential tasks to a household robot“, in ROMAN 2011, p. 282-287, 2011. Google Scholar

  • [70] N. Chen, Y. Hu, J. Zhang, “Robot Learning of Everyday Object Manipulation Using Kinect“, in Foundations and Practical Applications of Cognitive Systems and Information Processing: Advances in Intelligent Systems and Computing, vol. 215, p. 665- 674, 2014. Google Scholar

  • [71] G. Amato, M. Broxvall, S. Chessa, M Dragone, C Gennaro, C. Vairo, “When Wireless Sensor Networks Meet Robots“, in ICSNC 2012 : The Seventh International Conference on Systems and Networks Communications, 2012. Google Scholar

  • [72] M. A. Goodrich and A. C. Schultz, “Human-robot Interaction: A Survey“, in Found. Trends Hum.-Comput. Interact., NowPublishers Inc, vol. 1, num. 3, pp. 203-275, 2007. Google Scholar

  • [73] T. S. Dahl and N. M. K. Boulos, “Robots in Health and Social Care: A Complementary Technology to Home Care and Telehealthcareż‘, in Robotics, vol 3, num 1, pp. 1-21, 2013. Google Scholar

  • [74] A. Dillon, “User Interface Design“, MacMillan Encyclopedia of Cognitive Science, Vol. 4, London: MacMillan, pp. 453-458, 2003. Google Scholar

  • [75] N. A. Streitz: “From Human-Computer Interaction to Human- Environment Interaction: Ambient Intelligence and the Disappearing Computer“, Universal Access in Ambient Intelligence Environments, pp. 3-13, 2006. Google Scholar

  • [76] N. A. Streitz, T. Prante, C. Röcker, D. van Alphen, R. Stenzel, C. Magerkurth, S. Lahlou, V. Nosulenko, F. Jegou, F. Sonder, D. A. Plewe: “Smart Artefacts as Affordances for Awareness in Distributed Teams“, The Disappearing Computer, pp. 3-29, 2007. Google Scholar

  • [77] T. W. Fong, C. Thorpe, C. Baur, “Robot, asker of questions“, In Robotics and Autonomous Systems, vol. 42, No. 3-4, pp. 235– 243, 2003. Google Scholar

  • [78] B. Graf, M. Hans, R. D. Schraft, “Mobile robot assistants: issues for dependable operation in direct cooperation with humans“, IEEE Robotics and Automation Magazine, 11(2):67–77, 2004. Google Scholar

  • [79] E. A. Sisbot, L. F. Marin, R. Alami, “Spatial reasoning for human robot interaction“, In Proc. of IEEE/RSJ International Conference on Intelligent Robots and Systems IROS 2007, pages 2281–2287, 2007. Google Scholar

  • [80] F. Broz, I. Nourbakhsh, R. Simmons, “Planning for human-robot interaction using time-state aggregated pomdps“, In Proc. of the 23rd Conf. on Artificial Intelligence (AAAI), 2008. Google Scholar

  • [81] V. Montreuil, A. Clodic, R. Alami, “Planning human centered robot activities“, In Proc. of the 2007 IEEE International Conference on Systems, Man, and Cybernetics (SMC), 2007. Google Scholar

  • [82] M. Cirillo, L. Karlsson, and A. Saflotti, “Human-aware task planning for mobile robots“, In Proc. of the Int. Conf. on Advanced Robotics (ICAR), 2009. Google Scholar

  • [83] T. Kruse, A. Kirsch, “Towards Opportunistic Action Selection in Human-Robot Cooperation“, In 33rd Annual German Conference on Artificial Intelligence (KI 2010), 2010. Google Scholar

  • [84] G. Amato, D. Bacciu, M. Broxvall, S. Chessa, S. Coleman, M. Di Rocco, M. Dragone, C. Gallicchio, C. Genaro, H. Lozano, T. M. McGinnity, A. Micheli, A. K. Ray, A. Renteria, A. Saflotti, D. Swords, C. Vairo, P. Vance, “Robotic Ubiquitous Cognitive Ecology for Smart Homes“, in Journal of Intelligent & Robotic Systems, pp. 1-25, Feb 2015. Google Scholar

  • [85] S. Coradeschi, A. Cesta, G. Cortellessa, L. Coraci, J. Gonzalez, L. Karlsson, F. Furfari, A. Loutfi, A. Orlandini, F. Palumbo, F. Pecora, S. von Rump, A. Štimec, J. Ullberg and B. Östlund, “GiraffPlus: Combining Social Interaction and Long Term Monitoring for Promoting Independent Living“, In Proceedings of Human System Interaction (HSI) 2013, Gdansk, Poland, June, 2013. Google Scholar

  • [86] R. Borja, J.R. de la Pinta, A. Álvarez, J.M. Maestre “Robots in the smart home: a project towards interoperability“, In International Journal of Ad Hoc and Ubiquitous Computing, vol. 7, No. 3, pp. 192-201, May 2011. Google Scholar

  • [87] M. Girolami, F. Palumbo, F. Furfari, S. Chessa, “The Integration of ZigBee with the GiraffPlus Robotic Framework“, In Evolving Ambient Intelligence, Communications in Computer and Information Science Volume 413, pp. 86-101, 2013. Google Scholar

  • [88] Y. Ha, J. Sohn, Y. Cho and H. Yoon, “Towards Ubiquitous Robotic Companion: Design and Implementation of Ubiquitous Robotic Service Framework“, ETRI Journal, vol. 27, no. 6, pp. 666-676, 2005. Google Scholar

  • [89] UniversAAL, “UNIVERsal open platform and reference Specifications for Ambient Assisted Living,” http://universaal.org/, Last referenced on 28th of September, 2014, 2014. Google Scholar

  • [90] ROS, “Robotic Operating System,” http://www.ros.org/, Last referenced on 28th of September, 2014, 2014. Google Scholar

  • [91] M. Auvray, C. Lenay, J. Stewart, ”Perceptual interactions in a minimalist virtual environment”, New Ideas in Psychology, 27(1), pp. 32-47, 2009. Google Scholar

  • [92] C, Parapar, J. Rey, J.R. Fernandez, M. Ruiz, ”Informe sobre la l+D+l sobre envejecimiento”, Fundacion CSIS, elder user responses regarding preferred functionalities of an assistive robot, 2010. Google Scholar

  • [93] A. Cesta, G. Cortellessa, F. Pecora, R. Rasconi, ”Supporting Interaction in the RoboCare Intelligent Assistive Environment”, In Proceedings of AAAI Spring Symposium on Interaction Challenges for Intelligent Assistants, 2007. Google Scholar

  • [94] J.N. Pereira, P. Silva, P. U. Lima, A. Martinoli, ”SocialAware Coordination of Multi-Robot Systems Based on Institutions in Human Behaviour Understanding in Networked Sensing”, Theory and applications of networks of sensors, 2014. Google Scholar

About the article

Received: 2014-10-15

Accepted: 2015-04-14

Published Online: 2015-08-11

Citation Information: Paladyn, Journal of Behavioral Robotics, Volume 6, Issue 1, ISSN (Online) 2081-4836, DOI: https://doi.org/10.1515/pjbr-2015-0009.

Export Citation

© 2015 Mauro Dragone et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Comments (0)

Please log in or register to comment.
Log in