Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Paladyn, Journal of Behavioral Robotics

Editor-in-Chief: Schöner, Gregor

Covered by SCOPUS

CiteScore 2018: 2.17

SCImago Journal Rank (SJR) 2018: 0.336
Source Normalized Impact per Paper (SNIP) 2018: 1.707

ICV 2017: 99.90

Open Access
See all formats and pricing
More options …

Feasibility Study of Textureless Object Detection and Pose Estimation Based on a Model with 3D Edgels and Surfaces

Kimitoshi Yamazaki / Kiyohiro Sogen / Takashi Yamamoto / Masayuki Inaba
Published Online: 2015-12-28 | DOI: https://doi.org/10.1515/pjbr-2015-0012


This paper describes a method for the detection of textureless objects. Our target objects include furniture and home appliances, which have no rich textural features or characteristic shapes. Focusing on the ease of application, we define a model that represents objects in terms of three-dimensional edgels and surfaces. Object detection is performed by superimposing input data on the model. A two-stage algorithm is applied to bring out object poses. Surfaces are used to extract candidates fromthe input data, and edgels are then used to identify the pose of a target object using two-dimensional template matching. Experiments using four real furniture and home appliances were performed to show the feasibility of the proposed method.We suggest the possible applicability in occlusion and clutter conditions.

Keywords : object detection; pose estimation; textureless object; 3D edgel


  • [1] H. Bay, A. Ess, T. Tuytelaars, L. Van Gool: “SURF: Speeded Up Robust Features, “ Computer Vision and Image Understanding (CVIU), Vol. 110, No. 3, pp. 346–359, 2008 Google Scholar

  • [2] Besl, P. J. and McKay, N. D.: “A Method for Registration of 3-D Shapes,” IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 14, No. 2, pp. 239-256, 1992. Google Scholar

  • [3] G. Borgefors: “Hierarchical Chamfer Matching: a Parametric Edge Matching Algorithm,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 1988. Google Scholar

  • [4] M. Ciocarlie, K. Hsiao, A. Leeper and D. Gossow: “Mobilemanipulation through an assistivehomerobot,” in Proc. of IEEE/RSJ International Conference on Robots and Systems, pp.5313 - 5320, 2012. Google Scholar

  • [5] M. Fuchs, et al.:”Rollin’ Justin . Design considerations and realization of a mobile platform for a humanoid upper body,” in Proc. of the IEEE International Conference on Robotics and Automation, pp. 4131-4137, 2009. Google Scholar

  • [6] K. Hashimoto, F. Saito, T. Yamamoto and K.Ikeda: “A Field Study of the Human Support Robot in the Home Environment,” in Proc. of IEEE Workshop on Advanced Robotics and its Social Inpacts, pp. 143 – 150, 2013. Google Scholar

  • [7] S. Hinterstoisser et al.: “Multimodal templates for real-time detection of texture-less objects in heavily cluttered scenes,” 2011 IEEE International Conference on Computer Vision pp. 858 - 865, 2011. Google Scholar

  • [8] D. Huttenlocher, G. Klanderman, and W. Rucklidge: “Comparing Images Using the Hausdorff Distance,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 1993. Web of ScienceGoogle Scholar

  • [9] A. Johnson and M. Hebert: “Surface Matching for Object Recognition in Complex Three-Dimensional Scenes,” Image and Vision Computing, vol. 16, pp. 635-651, 1998. Google Scholar

  • [10] K.Kitahama, K.Tsukada, F.Galpin, T.Matsubara and Y.Hirano: “Vision-based scene representation for 3D interaction of service robots,” in Proc. of IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp.4756 – 4761, 2006. Google Scholar

  • [11] J. Kuehnle, A. Verl, Z. Xue, S. Ruehl, J. Zoellner, R. Dillmann, T. Grundmann, R. Eidenberger, and R. Zoellner: “6d object localization and obstacle detection for collision-free manipulation with a mobile service robot,” in Proc. International Conference on Advanced Robotics, 2009. Google Scholar

  • [12] S. Lee, H. Moradib, D. Jangc, H. Jangd, E. Kime, P M. Lef, J. Seog and J. Hanh: “Toward Human-Like Real-TimeManipulation: From Perception to Motion Planning,” Advanced Robotics, Vol. 22, Issue 9, pp. 983 – 1005, 2008. Web of ScienceGoogle Scholar

  • [13] D. G. Lowe: “Distinctive image features from scale-invariant keypoints,” Int’l J. of Computer Vision, vol. 60, No. 2, pp. 91-110, 2004. Google Scholar

  • [14] Z. Marton, D Pangercic, R. B. Rusu, A. Holzbach and M. Beetz: “Hierarchical Object Geometric Categorization and Appearance Classification forMobileManipulation,” in Proc. of IEEE-RAS Int’l Conf. on Humanoid Robots, pp. 365 – 370, 2011. Google Scholar

  • [15] M. Muja, R. Rusu, G. Bradski, and D. Lowe: “Rein - a Fast, Robust, Scalable Recognition Infrastructure,” in International Conference on Robotics and Automation, 2011. Google Scholar

  • [16] K. Okada, M. Kojima, S. Tokutsu, T. Maki, Y. Mori and M. Inaba: “Multi-cue 3D Object Recognition in Knowledge-based Visionguided Humanoid Robot System,” Proc. of the IEEE/RSJ Int’l. Conf. on Intelligent Robots and Systems, pp.1505–1506, 2007. Google Scholar

  • [17] D. Pangercic, V. Haltakov and M. Beetz: “Fast and Robust Object Detection in Household Environments Using Vocabulary Trees with SIFT Descriptors,” IEEE/RSJ International Conference on Intelligent Robots and Systems, Workshop on Active Semantic Perception and Object Search in the Real World, pp. 25–30, 2011. Google Scholar

  • [18] L. Petersson, P. Jensfelt, D. Tell, M. Strandberg, D. Kragic, and H. I. Christensen: “Systems integration for real-worldmanipulation tasks”, in Proc. Int. Conf. on Robotics and Automation, vol. 3, pp. 2500 – 2505, 2002. Google Scholar

  • [19] B. Pitzer, M. Styer, C. Bersch, C. DuHadway, J. Becker: “Towards perceptual shared autonomy for robotic mobilemanipulation,”, in Proc. of Int’l Conf. on Robotics and Automation, pp. 6245 – 6251, 2011. Google Scholar

  • [20] U. Reiser, et al.:”Care-O-bot 3 – Creating a product vision for service robot applications by integrating design and technology,” in Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1992-1997, 2009. Google Scholar

  • [21] R. B. Rusu, Nico Blodow and Michael Beetz: “Fast Point Feature Histograms (FPFH) for 3D registration,“ IEEE International Conference on Robotics and Automation, pp. 3212 - 3217, 2009. Google Scholar

  • [22] R. B. Rusu, Z. C. Marton, N. Blodow and M. Beetz: “Persistent Point Feature Histograms for 3D Point Clouds,” in Proc. of International Conference on Intelligent Autonomous Systems, pp. 119 - 129, 2008. Google Scholar

  • [23] L. J. Skelly and S. Sclaroff: “Improved feature descriptors for 3-D surface matching,” in Proc. SPIE Conf. on Two- and Three- Dimensional Methods for Inspection and Metrology V, 2007. Google Scholar

  • [24] S. Srinivasa, D. Ferguson, C. J. Helfrich, D. Berenson, A. Collet, R. Diankov, G. Gallagher, G. Hollinger, J. Kuffner, M. Vande Wegh: “HERB: A Home Exploring Robotic Butler,”, Journal of Autonomous Robots, Vol.28, pp.5 – 20, 2009. CrossrefGoogle Scholar

  • [25] B. Steder, R. B. Rusu, K. Konolige, W. Burgard: “NARF: 3D Range Image Features for Object Recognition,” in Proc. of International Conference on Robotics and Automation, pp.2601 – 2608, 2011. Google Scholar

  • [26] J. Weingarten and R. Siegwart: “EKF-based 3D SLAM for Structured Environment Reconstruction,” in Proc. of Int’l Conf on Intelligent Robots and Systems, pp. 3834 - 3839, 2005. Google Scholar

  • [27] K. Yamazaki, R. Ueda, S. Nozawa, M. Kojima, K. Okada, K. Matsumoto, M. Ishikawa, I. Shimoyama and M. Inaba: “Home Assistant Robot for an Aging Society,” in Proc. of the IEEE, Vol.100, No.8, pp.2429 – 2441, 2012. Web of ScienceGoogle Scholar

  • [28] : Richtsfeld, A., Morwald, T., Prankl, J., Zillich, M., and Vincze, M: “Learning of perceptual grouping for object segmentation on RGB-D data,” Journal of visual communication and image representation, Vol. 25, No. 1, pp. 64 – 73, 2014. Web of ScienceGoogle Scholar

  • [29] Microsoft kinect: http://www.xbox.com/en-US/kinect Google Scholar

About the article

Received: 2014-04-09

Accepted: 2015-11-16

Published Online: 2015-12-28

Citation Information: Paladyn, Journal of Behavioral Robotics, Volume 6, Issue 1, ISSN (Online) 2081-4836, DOI: https://doi.org/10.1515/pjbr-2015-0012.

Export Citation

© 2015 Kimitoshi Yamazaki et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in