Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Paladyn, Journal of Behavioral Robotics

Editor-in-Chief: Schöner, Gregor

1 Issue per year


CiteScore 2017: 0.33

SCImago Journal Rank (SJR) 2017: 0.104

Open Access
Online
ISSN
2081-4836
See all formats and pricing
More options …

Imitation of human expressions based on emotion estimation by mental simulation

Takato Horii
  • Corresponding author
  • Department of Adaptive Machine Systems, Graduate School of Engineering, Osaka University, Osaka, Japan
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Yukie Nagai
  • Corresponding author
  • Department of Adaptive Machine Systems, Graduate School of Engineering, Osaka University, Osaka, Japan
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Minoru Asada
  • Corresponding author
  • Department of Adaptive Machine Systems, Graduate School of Engineering, Osaka University, Osaka, Japan
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-12-30 | DOI: https://doi.org/10.1515/pjbr-2016-0004

Abstract

Humans can express their own emotion and estimate the emotional states of others during communication. This paper proposes a unified model that can estimate the emotional states of others and generate emotional self-expressions. The proposed model utilizes a multimodal restricted Boltzmann machine (RBM) —a type of stochastic neural network. RBMs can abstract latent information from input signals and reconstruct the signals from it. We use these two characteristics to rectify issues affecting previously proposed emotion models: constructing an emotional representation for estimation and generation for emotion instead of heuristic features, and actualizing mental simulation to infer the emotion of others from their ambiguous signals. Our experimental results showed that the proposed model can extract features representing the distribution of categories of emotion via self-organized learning. Imitation experiments demonstrated that using our model, a robot can generate expressions better than with a direct mapping mechanism when the expressions of others contain emotional inconsistencies.Moreover, our model can improve the estimated belief in the emotional states of others through the generation of imaginary sensory signals from defective multimodal signals (i.e., mental simulation). These results suggest that these abilities of the proposed model can facilitate emotional human–robot communication in more complex situations.

Keywords: emotion; human–robot interaction; deep learning; mental simulation; imitation

References

  • [1] C. Breazeal, D. Buchsbaum, G. J. Daphna, D. Gatenby, B. Blumberg, Learning From and About Others: Towards Using Imitation to Bootstrap the Social Understanding of Others by Robots, Artificial life, 11, 1–2, 31–62 (2005) Google Scholar

  • [2] A. Andra, P. Robinson, An android head for social-emotional intervention for children with autism spectrum conditions, Affective Computing and Intelligent Interaction, 183–190, Springer (2011) Google Scholar

  • [3] G. Trovato, M. Zecca, T. Kishi, N. Endo, K. Hashimoto, A. Takanishi, GENERATION OF HUMANOID ROBOT’S FACIAL EXPRESSIONS FOR CONTEXT-AWARE COMMUNICATION, International Journal of Humanoid Robotics, 10, 1, 1350013 (2013) Google Scholar

  • [4] T. Kishi, T. Kojima, N. Endo, M. Destephe, T. Otani, L. Jamone, P. Kryczka, G. Trovato, K. Hashimoto, S. Cosentino, A. Takanishi, Impression Survey of the Emotion Expression Humanoid Robot with Mental Model based Dynamic Emotions, IEEE International Conference on Robotics and Automation, 1663–1668 (2013) Google Scholar

  • [5] F. Hegel, T. Spexard, B. Wrede, G. Horstmann, T. Vogt, Playing a different imitation game: Interaction with an Empathic Android Robot, IEEE-RAS International Conference on Humanoid Robots, 56–61 (2006) Google Scholar

  • [6] C. Breazeal, L. Aryananda, Recognition of Affective Communicative Intent in Robot-Directed Speech, Autonomous robots, 12, 1, 83–104 (2002) CrossrefGoogle Scholar

  • [7] C. Breazeal, Emotion and sociable humanoid robots, International Journal of Human-Computer Studies, 59, 1 119–155 (2003) Google Scholar

  • [8] Y. Matsui, M. Kanoh, S. Kato, T. Nakamura, H. Itoh, A Model for Generating Facial Expressions Using Virtual Emotion Based on Simple Recurrent Network, Journal of Advanced Computational Intelligence and Intelligent Informatics, 14, 5, 453–463 (2010) Google Scholar

  • [9] M. Kanoh, S. Kato, H. Itoh, Facial Expressions Using Emotional Space in Sensitivity Communication Robot "Iffiot", IEEE/RSJ International Conference on Intelligent Robots and Systems, 1586–1591 (2004) Google Scholar

  • [10] M. Kanoh, S. Iwata, S. Kato, H. Itoh, EMOTIVE FACIAL EXPRESSIONS OF SENSITIVITY COMMUNICATION ROBOT "IFBOT", Kansei Engineering Internationa, 5, 3, 35–42 (2005) CrossrefGoogle Scholar

  • [11] I. Lütkebohle, F. Hegel, S. Schulz, M. Hackel, B. Wrede, S. Wachsmuth, G. Sagerer, The Bielefeld Anthropomorphic Robot Head "Flobi", IEEE International Conference on Robotics and Automation, 3384–3391 (2010) Google Scholar

  • [12] A. Lim, H.G. Okuno, The MEI Robot: Towards Using Motherese to Develop Multimodal Emotional Intelligence, IEEE Transactions on Autonomous Mental Development, 6, 2, 126–138 (2014) Google Scholar

  • [13] A. Lim, H.G. Okuno, A Recipe for Empathy. Integrating the Mirror System, Insula, Somatosensory Cortex and Motherese, International Journal of Social Robotics, 7, 1, 35–49 (2015) Google Scholar

  • [14] P. Ekman,W. V. Friesen, J. C. Hager, The Facial Action Coding System (2002) Web of ScienceGoogle Scholar

  • [15] G. di Pellegrino, L. Fadiga, L. Fogassi, V. Gallese, G. Rizzolatti, Understanding motor events: a neurophysiological study, Experimental brain research, 91, 1, 176–180 (1992) Google Scholar

  • [16] M. Iacoboni, Imitation, Empathy, and Mirror Neurons, Annual review of psychology, 60, 653–670 (2009) Google Scholar

  • [17] V. Gallese A. Goldman, Mirror neurons and the simulation theory of mind-reading, Trends in cognitive sciences, 2, 12, 493– 501 (1998) Google Scholar

  • [18] F.V. Overwallem K. Baetens, Understanding others’ actions and goals by mirror and mentalizing systems: A meta-analysis, Neuroimage, 48, 3, 564–584 (2009) CrossrefWeb of ScienceGoogle Scholar

  • [19] Y. Kim, H. Lee, E. Mower Provost, DEEP LEARNING FOR ROBUST FEATURE GENERATION IN AUDIOVISUAL EMOTION RECOGNITION, IEEE International Conference on Acoustics, Speech and Signal Processing, 3687–3691 (2013) Google Scholar

  • [20] G. E. Hinton, R. Salakhutdinov, Reducing the Dimensionality of Datawith Neural Networks, Science, 313, 5786, 504–507 (2006) Google Scholar

  • [21] G. Hinton, Technical report, Department of Computer Science University of Toronto (2010) Google Scholar

  • [22] S. Sukhbaatar, T. Makino, K. Aihara, T. Chikayama, Robust Generation of Dynamical Patterns in Human Motion by a Deep Belief Nets, Asian Conference on Machine Learning, 231–246 (2011) Google Scholar

  • [23] J. Ngiam, A. Khosla, M. Kim, J. Nam, H. Lee, A.Y. Ng, Multimodal Deep Learning, Proceedings of the 28th international conference on machine learning, 689–696 (2011) Google Scholar

  • [24] N. Srivastava, R. Salakhutdinov,Multimodal Learningwith Deep Belief Nets, International Conference on Machine Learning Workshop (2012) Google Scholar

  • [25] N. Srivastava, R. Salakhutdinov,Multimodal Learningwith Deep BoltzmannMachines, Journal ofMachine Learning Research, 15, 1, 2949–2980 (2014) Google Scholar

  • [26] K. H. Cho, A. Ilin, T. Raiko, Improved Learning of Gaussian– Bernoulli Restricted Boltzmann Machines, Artiffcial Neural Networks and Machine Learning, 10–17 (2011) Google Scholar

  • [27] L.M. Oberman, P. Winkielman, V.S. Ramachandra, Face to face: Blocking facial mimicry can selectively impair recognition of emotional expressions, Social neuroscience, 2, 3–4, 167–178 (2007) CrossrefWeb of ScienceGoogle Scholar

  • [28] C. Busso, M. Bulut, C.C. Lee, A. Kazemzadeh, E. Mower, S. Kim, J.N. Chang, S. Lee, and S.S. Narayanan, IEMOCAP: Interactive emotional dyadic motion capture database, Journal of Language Resources and Evaluation, 42, 4, 335–359 (2008) Google Scholar

  • [29] E. Mower, M.J. Matarić, S.S. Narayanan, A Framework for Automatic Human Emotion Classification Using Emotion Profiles, IEEE Transactions on Audio, Speech, and Language Processing, 19, 5, 1057–1070 (2011) CrossrefGoogle Scholar

  • [30] A. Mehrabian, Silent messages, 3rd edition (Wadsworth Belmont, CA, 1971) Google Scholar

  • [31] M.S. Beauchamp, N.E. Yasar, R.E. Frye, T. Ro, Touch, sound and vision in human superior temporal sulcus, NeuroImage, 41, 3, 1011–1020 (2008) CrossrefWeb of ScienceGoogle Scholar

  • [32] S. Campanella, P. Belin, Integrating face and voice in person perception, Trends in Cognitive sciences, 11, 535–543 (2007) Google Scholar

  • [33] R. Watoson, M. Latinus, T. Noguchi, O. Garrod, F. Crabbe, P. Belin, Crossmodal adaptation in right posterior superior temporal sulcus during face-voice emotional integration, The Journal of Neuroscience, 34, 6813–6821 (2014) CrossrefGoogle Scholar

  • [34] J. Russell, A circumplex model of affect, Journal of personality and social psychology 39, 1161 (1980) Google Scholar

  • [35] T. Horii, Y. Nagai, M. Asada, Touch and emotion:Modeling of developmental differentiation of emotion lead by tactile dominance, IEEE Third Joint International Conference on Development and Learning and Epigenetic Robotics (2013) Google Scholar

About the article

Received: 2016-08-01

Accepted: 2016-12-20

Published Online: 2016-12-30


Citation Information: Paladyn, Journal of Behavioral Robotics, Volume 7, Issue 1, ISSN (Online) 2081-4836, DOI: https://doi.org/10.1515/pjbr-2016-0004.

Export Citation

© 2016 Takato Horii et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in