Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Paladyn, Journal of Behavioral Robotics

Editor-in-Chief: Schöner, Gregor


Covered by SCOPUS


CiteScore 2018: 2.17

SCImago Journal Rank (SJR) 2018: 0.336
Source Normalized Impact per Paper (SNIP) 2018: 1.707

ICV 2018: 120.52

Open Access
Online
ISSN
2081-4836
See all formats and pricing
More options …

Multi-robot Voronoi tessellation based area partitioning algorithm study

Vladimir Alexandrov / Konstantin Kirik / Alexander Kobrin
Published Online: 2018-08-28 | DOI: https://doi.org/10.1515/pjbr-2018-0014

Abstract

This article is focused on the multi-robot applied Voronoi tessellation based area partitioning algorithm operation and properties. The selection of main parameters of the algorithm is covered and explanation of the algorithm functionality is given. The subspace area equality and the operation time are taken as main measures of the algorithm operation for experiments where a dependency on the border shape and structure and a number of robots in the group are considered. The experimental data, gained during the study, is summarized mainly in a graphical way.

Keywords: mobile autonomous robots; cooperative behavior; collective behavior; collaborative multi-robot task; Voronoi tessellation; area partitioning; simulation

References

  • [1] A. Nikitenko, J. Grundspenkis, A. Liekna, M. Ekmanis, G. Kulikovskis, I. Andersone, Multi-robot system for vacuum cleaning domain, In: Y. Demazeau, F. Zambonelli, J. M. Corchado, J. Bajo (Eds.), Advances in Practical Applications of Heterogeneous Multi-Agent Systems (PAAMS 2014), Lecture Notes in Computer Science, Springer, Cham, 8473, 363-366Google Scholar

  • [2] M. Lindhé, P. Ögren, K. H. Johansson, Flocking with obstacle avoidance: a new distributed coordination algorithm based on Voronoi partitions, Robotics and Automation, Proceedings of the IEEE ICRA 2005, DOI 10.1109/ROBOT.2005.1570372CrossrefGoogle Scholar

  • [3] D. Portugal, R. Rocha, A survey on multi-robot patrolling algorithms, In: L. M. Camarinha-Matos (Ed.), Technological Innovation for Sustainability, DoCEIS 2011, IFIP Advances in Information and Communication Technology, Springer, Berlin, Heidelberg, 349, 139-146Google Scholar

  • [4] A. Pennisi, F. Previtali, F. Ficarola, D. D. Bloisi, L. Iocchi, A. Vitaletti, Distributed sensor network for multi-robot surveillance, Procedia Computer Science, 2014, 32, 1095-1100, DOI 10.1016/j.procs.2014.05.538CrossrefGoogle Scholar

  • [5] V. Alexandrov, K. Kirik, A. Kobrin, A hardware-based modeling approach for real world collaborative multi-robot tasks, Paladyn, Journal of Behavioral Robotics, DOI 10.1515/pjbr-2016-0003CrossrefGoogle Scholar

  • [6] V. Alexandrov, A. I. Kobrin, The architecture of mobile robot, a part of software and hardware system for group control algorithms development, Radioelectronics Journal (Online), 2017, ISSN 1684-1719, http://jre.cplire.ru/jre/may11/8/text.pdfGoogle Scholar

  • [7] V. Gorodetskiy,O. Karsaev, V. Samoilov, V. Skormin,Multi-agent technology for air trafic control and incident management in airport airspace, Proceedings of the International Workshop "Agents in Traflc and Transportation", Estoril, Portugal, IEEE Computer Press, 2008, 119-125Google Scholar

  • [8] J. van den Berg, J. Snoeyink, M. Lin, D. Manocha, Centralized path planning for multiple robots: Optimal decoupling into sequential plans, Conference: Robotics: Science and Systems V, University of Washington, Seattle, USA, 2009, DOI 10.15607/RSS.2009.V.018Google Scholar

  • [9] E. Bonabeau, M. Dorigo, G. Theraulaz, Swarm intelligence: from natural to artificial systems, Santa Fe Institute Studies on the Sciences of Complexity, Oxford Press, 1999Google Scholar

  • [10] J. Cortés, S. Martínez, T. Karatas, F. Bullo, Coverage control for mobile sensing networks, IEEE Transactions on Robotics and Automation, 2004, 20(2), 243-255, DOI 10.1109/TRA.2004.824698Google Scholar

  • [11] A. Breitenmoser, M. Schwager, J.-C. Metzger, R. Siegwart, D. Rus, Voronoi coverage of non-convex environments with a group of networked robots, Proceedings of the IEEE International Conference on Robotics and Automation, 2010, 4982-4989, DOI 10.1109/ROBOT.2010.5509696CrossrefGoogle Scholar

  • [12] S. G. Lee, Y. Diaz-Mercado, M. Egerstedt, Multirobot control using time-varying density functions, IEEE Transactions on Robotics, 2015, 31(2), 489-493, DOI 10.1109/TRO.2015.2397771CrossrefWeb of ScienceGoogle Scholar

  • [13] P. Bhattacharya, M. L. Gavrilova, Voronoi diagram in optimal path planning, 4th International Symposium on Voronoi Diagrams in Science and Engineering (ISVD 2007), Glamorgan, 2007, 38-47, DOI 10.1109/ISVD.2007.43CrossrefGoogle Scholar

  • [14] W. Sun, L. Dou, J. Chen, H. Fang, A multi-robot target tracking algorithm with centroidal Voronoi tessellation and consensus strategy, Proceedings of the 29th Chinese Control Conference, Beijing, 2010, 4607-4612Google Scholar

  • [15] Q. Du, V. Faber, M. Gunzburger, Centroidal Voronoi tessellations: applications and algorithms, Journal SIAM Review, 1999, 41(4), 637-676CrossrefGoogle Scholar

  • [16] TABLE_VORONOI: Voronoi Diagram Data [Online], http://people.sc.fsu.edu/~jburkardt/f_src/table_voronoi/table_voronoi.htmlGoogle Scholar

  • [17] J. Burkardt, M. Gunzburger, J. Peterson, R. Brannon, User manual and supporting information for library of codes for centroidal Voronoi point placement and associated zeroth, first and second moment determination, Technical Report, SAND2002-0099, Sandia National Laboratories, February, 2002Google Scholar

  • [18] General Polygon Clipper library [Online], http://www.cs.man.ac.uk/~toby/alan/software/index.htmlGoogle Scholar

  • [19] R. Vatti Bala, A generic solution to polygon clipping, Communications of the ACM, ACM New York, NY, USA, 1992, 35(7), 56-63CrossrefGoogle Scholar

  • [20] J. Burns, Centroidal Voronoi tessellations, Whitman College Academic, Walla Walla, WA, 2009, https://www.whitman.edu/Documents/Academics/Mathematics/burns.pdfGoogle Scholar

  • [21] R. van Liere, J. Harkes,W. de Leeuw, A distributed blackboard architecture for interactive data visualization, Proceedings Visualization ’98, Research Triangle Park, NC, USA, 1998, 225-231, DOI 10.1109/VISUAL.1998.745307CrossrefGoogle Scholar

About the article

Received: 2017-12-10

Accepted: 2018-06-19

Published Online: 2018-08-28


Citation Information: Paladyn, Journal of Behavioral Robotics, Volume 9, Issue 1, Pages 214–220, ISSN (Online) 2081-4836, DOI: https://doi.org/10.1515/pjbr-2018-0014.

Export Citation

© by Vladimir Alexandrov et al., published by De Gruyter. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in