Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Paladyn, Journal of Behavioral Robotics

Editor-in-Chief: Schöner, Gregor


Covered by SCOPUS


CiteScore 2018: 2.17

SCImago Journal Rank (SJR) 2018: 0.336
Source Normalized Impact per Paper (SNIP) 2018: 1.707

ICV 2018: 120.52

Open Access
Online
ISSN
2081-4836
See all formats and pricing
More options …

Non-technical users’ first encounters with a robotic telepresence technology: An empirical study of office workers

Patrik Björnfot / Joakim Bergqvist / Victor Kaptelinin
Published Online: 2018-10-18 | DOI: https://doi.org/10.1515/pjbr-2018-0022

Abstract

Robotic telepresence technologies are becoming ever more usable and affordable, as well as increasingly available as consumer products. In the coming years, a significant number of people are likely to encounter the technology for the first time, and many, if not most, of them are going to be “non-technical” users, that is, people who do not have special technical knowledge and skills of IT-professionals. Therefore, understanding how nontechnical users are getting familiar with robotic telepresence technology, how they perceive the technology, learn to control it, and relate it to their everyday work practices, is a topical research issue. This paper reports an empirical study, in which eight non-technical users, office workers who were not IT-professionals, were introduced to robotic telepresence and provided with a practical experience of acting as pilots of a remotely controlled robot. In follow up interviews the participants were asked to reflect on potential uses of the technology in their professional activities. The participants could successfully acquire basic navigation skills and reached a high level of spatial presence, but experienced problems with developing a "new body image”. When reflecting on the potential of the technology for supporting their work, the participants envisioned a number of benefits associated with remote physical mobility. The impact of the technology on the quality of workrelated social interactions was expected to be generally positive but somewhat limited.

Keywords: robotic telepresence; mobile remote presence (MRP); non-technical users; first encounters; appropriation; spatial presence; embodiment

References

  • [1] M. K. Lee, L. Takayama, Now, I have a body: Uses and social norms for mobile remote presence in the workplace, In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, ACM, 2011, 33-42Google Scholar

  • [2] A. Kristoffersson, S. Coradeschi, A. Loutfi, A review of mobile robotic telepresence, Advances in Human-Computer Interaction, 2013, Article ID 902316Google Scholar

  • [3] K. M. Tsui, H. A. Yanco, Design challenges and guidelines for social interaction using mobile telepresence robots, Reviews of Human Factors and Ergonomics, 2013, 9(1), 227-301, DOI: 10.1177/1557234X13502462CrossrefGoogle Scholar

  • [4] E. Guizzo, T. Deyle, Robotics trends for 2012, In: IEEE Spectrum Technol. Eng. Sci. News, 2012, https://spectrum.ieee.org/automaton/robotics/robotics-hardware/robotics-trends-for 2012 (Accessed 16 Apr 2018)Google Scholar

  • [5] E. M. Rogers, Diffusion of innovations, NY: Free Press of Glencoe, 1962Google Scholar

  • [6] C. Neustaedter, G. Venolia, J. Procyk, D. Hawkins, To Beamor not to Beam: A study of remote telepresence attendance at an academic conference, In: Proceedings of the 19th ACM Conference on Computer-Supported Cooperative Work & Social Computing, ACM, 2016, 418-431Google Scholar

  • [7] I. Rae, C. Neustaedter, Robotic telepresence at scale, In: Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, ACM, 2017, 313-324Google Scholar

  • [8] C. B. Rebola, G. Eden, Remote robotic disability: Are we ready for robots?, Interactions, 2017, 24(3), 48-53, DOI: 10.1145/3064649Google Scholar

  • [9] B. W. Gleason, C. Greenhow, Hybrid education: The potential of teaching and learningwith robot-mediated communication, Online Learning, 2017, 21(4), DOI: 10.24059/olj.v21i4.1276CrossrefGoogle Scholar

  • [10] O.-H. Kwon, S.-Y. Koo, Y.-G. Kim, D.-S. Kwon, Telepresence robot system for English tutoring, In: 2010 IEEE Workshop on Advanced Robotics and its Social Impacts (ARSO), IEEE, 2010, 152-155Google Scholar

  • [11] F. Michaud, P. Boissy, D. Labonté, S. Brière, K. Perreault, H. Corriveau, et al., Exploratory design and evaluation of a homecare teleassistive mobile robotic system, Mechatronics, 2010, 20(7), 751-766Web of ScienceCrossrefGoogle Scholar

  • [12] A. Cesta, G. Cortellessa, F. Fracasso, A. Orlandini, M. Turno, User needs and preferences on AAL systems that support older adults and their carers, Journal of Ambient Intelligence and Smart Environments, 2018, 10(1), 49-70, DOI: 10.3233/AIS-170471CrossrefWeb of ScienceGoogle Scholar

  • [13] G. Cortellessa, F. Fracasso, A. Sorrentino, A. Orlandini, G. Bernardi, L. Coraci, et al., ROBIN, a telepresence robot to support older users monitoring and social inclusion: development and evaluation, Telemedicine and e-Health, 2017Web of ScienceGoogle Scholar

  • [14] A. Cesta, G. Cortellessa, A. Orlandini, L. Tiberio, Long-term evaluation of a telepresence robot for the elderly: methodology and ecological case study, International Journal of Social Robotics, 2016, 8(3), 421-441Google Scholar

  • [15] A. Orlandini, A. Kristoffersson, L. Almquist, P. Björkman, A. Cesta, G. Cortellessa, et al., Excite project: A review of fortytwo months of robotic telepresence technology evolution, Presence, 2016, 25(3), 204-221Google Scholar

  • [16] Giraff Technologies AB, http://www.giraff.org (Accessed September 2018)Google Scholar

  • [17] J. M. Beer, L. Takayama, Mobile remote presence systems for older adults: acceptance, benefits, and concerns, In: Proceedings of the 6th International Conference on Human-Robot Interaction, New York, NY, USA, ACM, 2011, 19-26Google Scholar

  • [18] I. Rae, G. Venolia, J. C. Tang, D. Molnar, A framework for understanding and designing telepresence, In: Proceedings of the 18th ACM Conference on Computer Supported Cooperative Work & Social Computing, ACM, 2015, 1552-1566Google Scholar

  • [19] V. Roto, E. Law, A. Vermereen, J. Hoonhout, User Experience White Paper - Bringing clarity to the concept of user experience, In: Dagstuhl Seminar on User Experience, September 15-18, 2010 (February 11, 2011), http://www.citeulike.org/user/PreciousJ/article/8816533Google Scholar

  • [20] E. Cha, A. Dragan, S. Srinivasa, Pre-school children’s first encounter with a robot, In: Proceedings of the 2014 ACM/IEEE International Conference on Human-Robot Interaction (HRI’14), ACM Press, 2014, 136-137Google Scholar

  • [21] A. Kristoffersson, S. Coradeschi, K. S. Eklundh, A. Loutfi, Sense of presence in a robotic telepresence domain, In: Proceedings of the 6th International Conference on Universal Access in Human-Computer Interaction: Users Diversity - Volume Part II, Berlin, Heidelberg, Springer-Verlag, 2011, 479-487Google Scholar

  • [22] Y. Engeström, Learning by expansion, Helsinki: Orienta Konsultit, 1987[23] V. Kaptelinin, B. A. Nardi, Actingwith technology: Activity theory and interaction design, MIT press, 2006Google Scholar

  • [24] A. N. Leontiev, Activity and consciousness, Philosophy in the USSR, Problems of Dialectical Materialism, 1977Google Scholar

  • [25] P. Rabardel, G. Bourmaud, From computer to instrument system: A developmental perspective, Interacting with computers, 2003, 15(5), 665-691CrossrefGoogle Scholar

  • [26] P. Dourish, Where the action is: The foundations of embodied interaction, MIT press, 2001Google Scholar

  • [27] T. Clemmensen, V. Kaptelinin, B. Nardi,Making HCI theory work: An analysis of the use of activity theory in HCI research, Behaviour & Information Technology, 2016, 35(8), 608-627Web of ScienceGoogle Scholar

  • [28] C.-M. Huang, B.Mutlu, Robot behavior toolkit: Generating Effective social behaviors for robots, In: Proceedings of the Seventh Annual ACM/IEEE International Conference on Human-Robot Interaction, New York, NY, USA, ACM, 2012, 25-32Google Scholar

  • [29] G. Riva, J. A. Waterworth, E. L. Waterworth, F. Mantovani, From intention to action: The role of presence, New Ideas in Psychology, 2011, 29(1), 24-37[30] P. Tchounikine, Designing for appropriation: A theoretical account, Human-Computer Interaction, 2017, 32(4), 155-195CrossrefGoogle Scholar

  • [31] S. Bødker, C. N. Klokmose, The human-artifact model: An activity theoretical approach to artifact ecologies, Human-Computer Interaction, 2011, 26(4), 315-371Google Scholar

  • [32] V. Kaptelinin, K. Kuuti, Cognitive tools reconsidered from augmentation to mediation, In: Human interfaces: questions of method and practice in cognitive technology, J. P. Marsh, B. Gorayska, J. Mey (Eds.), Elsevier, 1999Google Scholar

  • [33] V. Kaptelinin, L. J. Bannon, Interaction design beyond the product: Creating technology-enhanced activity spaces, Human- Computer Interaction, 2012, 27(3), 277-309Google Scholar

  • [34] S. Bødker, P. B. Andersen, Complex mediation, Human- Computer Interaction, 2005, 20(4), 353-402CrossrefGoogle Scholar

  • [35] N. B. Dohn, Affordances revisited: articulating a Merleau- Pontian view, International Journal of Computer-Supported Collaborative Learning, 2009, 4(2), 151-170Web of ScienceCrossrefGoogle Scholar

  • [36] D. Svanæs, Interaction design for andwith the lived body: Some implications of merleau-ponty’s phenomenology, ACM Transactions on Computer-Human Interaction (TOCHI), 2013, 20(1), 8Google Scholar

  • [37] L. Takayama, E. Marder-Eppstein, H. Harris, J. M. Beer, Assisted driving of a mobile remote presence system: System design and controlled user evaluation, In: 2011 IEEE International Conference on Robotics and Automation (ICRA), IEEE, 2011, 1883-1889Google Scholar

  • [38] International Society for Presence Research, The Concept of Presence: Explication Statement, In: International Society for Presence Research, 2000, https://ispr.info/ (Accessed 29 Dec 2017)Google Scholar

  • [39] S. Bødker, Through the Interface: A Human Activity Approach to User Interface Design, Hillsdale, NJ, USA, L. ErlbaumAssociates Inc., 1991Google Scholar

  • [40] VGo robotic telepresence for healthcare, education and busi ness, http://www.vgocom.com/ (Accessed 07 May 2018)Google Scholar

  • [41] Double, https://drive.doublerobotics.com/ (Accessed 25 Jan 2017)Google Scholar

  • [42] J. González-Jiménez, C. Galindo, J. R. Ruiz-Sarmiento, Technical improvements of the Giraff telepresence robot based on users’ evaluation, In: 2012 IEEE RO-MAN, IEEE, 2012, 827-832Google Scholar

  • [43] J. Bergqvist, Telepresence communication för människor i kontorsmiljö: En kvalitativ studie i användarupplevelse av Mobile Robotic Telepresence, In: Bachelor’s thesis, Department of Informatics, Umeå University, Sweden, 2017.Google Scholar

About the article

Received: 2017-12-29

Accepted: 2018-08-20

Published Online: 2018-10-18

Published in Print: 2018-10-01


Citation Information: Paladyn, Journal of Behavioral Robotics, Volume 9, Issue 1, Pages 307–322, ISSN (Online) 2081-4836, DOI: https://doi.org/10.1515/pjbr-2018-0022.

Export Citation

© by Patrik Björnfot et al., published by De Gruyter. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in